Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
A
antifragility
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Ana Pamela Osuna Vargas
antifragility
Commits
66cff740
Commit
66cff740
authored
Jan 19, 2020
by
Pamela Osuna
Browse files
Options
Browse Files
Download
Plain Diff
Merge branch 'master' of
https://git.c3.unam.mx/pamela.osuna/antifragility
parents
08490059
bb0354f0
Expand all
Hide whitespace changes
Inline
Side-by-side
Showing
7 changed files
with
180 additions
and
79 deletions
+180
-79
cnn.py
+0
-0
confusion_matrix.py
+8
-2
main.py
+31
-31
models.py
+12
-2
output_convert.py
+24
-17
parser.py
+103
-25
prec_recall.py
+2
-2
No files found.
cnn.py
View file @
66cff740
This diff is collapsed.
Click to expand it.
confusion_matrix.py
View file @
66cff740
...
@@ -49,7 +49,8 @@ def plot_confusion_matrix(cm,
...
@@ -49,7 +49,8 @@ def plot_confusion_matrix(cm,
if
normalize
:
if
normalize
:
cm
=
cm
.
astype
(
'float'
)
/
cm
.
sum
(
axis
=
1
)[:,
np
.
newaxis
]
cm
=
cm
.
astype
(
'float'
)
/
cm
.
sum
(
axis
=
1
)[:,
np
.
newaxis
]
plt
.
figure
(
figsize
=
(
8
,
6
))
fig
=
plt
.
figure
(
figsize
=
(
8
,
6
))
ax
=
fig
.
add_subplot
()
plt
.
imshow
(
cm
,
interpolation
=
'nearest'
,
cmap
=
cmap
)
plt
.
imshow
(
cm
,
interpolation
=
'nearest'
,
cmap
=
cmap
)
plt
.
title
(
title
)
plt
.
title
(
title
)
plt
.
colorbar
()
plt
.
colorbar
()
...
@@ -88,5 +89,10 @@ def plot_confusion_matrix(cm,
...
@@ -88,5 +89,10 @@ def plot_confusion_matrix(cm,
plt
.
ylabel
(
'True label'
)
plt
.
ylabel
(
'True label'
)
plt
.
xlabel
(
'Predicted label
\n
accuracy={:0.4f}; misclass={:0.4f}'
.
format
(
accuracy
,
misclass
))
plt
.
xlabel
(
'Predicted label
\n
accuracy={:0.4f}; misclass={:0.4f}'
.
format
(
accuracy
,
misclass
))
#plt.show()
#plt.show()
plt
.
savefig
(
"confusion_matrix"
)
# Added labels
labels
=
[
''
]
*
(
2
*
len
(
target_names
))
labels
[::
2
]
=
target_names
ax
.
set_xticklabels
([
''
]
+
labels
)
ax
.
set_yticklabels
([
''
]
+
labels
)
plt
.
savefig
(
"confusion_matrix.pdf"
)
plt
.
close
()
plt
.
close
()
main.py
View file @
66cff740
import
cnn
from
cnn
import
CNN_Antifrag
from
parser
import
parse_data
from
parser
import
parse_data
import
itertools
import
itertools
from
confusion_matrix
import
plot_confusion_matrix
from
confusion_matrix
import
plot_confusion_matrix
"""
"""
(c,b,e) will be read from the command line or a script
(c,b,e,o) will be read from the command line or a script
(c,b,e) corresponds to the combinations of the specific hyperparameters to build the model
(c,b,e,o) corresponds to the combinations of the specific hyperparameters
to build the model
c belongs to {0,1,2,3} and represents the layer architecture
c belongs to {0,1,2,3} and represents the layer architecture
b belongs to {0,1} and represents the batch size
b belongs to {0,1} and represents the batch size
e belongs to {0,1} and represents the number of epochs
e belongs to {0,1} and represents the number of epochs
o belongs to {0,1,2} and represents the balancing method
"""
"""
#reading arguments from command line
#c = int(sys.argv[1])
#b = int(sys.argv[2])
#e = int(sys.argv[3])
c_
=
[
0
,
1
,
2
,
3
]
c_
=
[
0
,
1
,
2
,
3
]
b_
=
[
0
,
1
]
b_
=
[
1
]
e_
=
[
0
,
1
]
e_
=
[
0
]
n_experiences
=
10001
o_
=
[
0
,
1
,
2
]
combinations
=
itertools
.
product
(
c_
,
b_
,
e_
)
n_experiences
=
100
combinations
=
itertools
.
product
(
c_
,
b_
,
e_
,
o_
)
#parse the data
input_
,
output_
=
parse_data
(
n_experiences
)
#run an specific combination
#parse the data
max_params
=
(
0
,
0
,
0
)
input_
,
output_
=
parse_data
(
n_experiences
,
kind
=
'linear'
)
#%%
max_avg_auc
=
0
max_avg_auc
=
0
for
params
in
combinations
:
for
params
in
combinations
:
avg_acc
,
avg_auc
,
X_train_kfold
,
X_test_kfold
,
y_train_kfold
,
y_test_kfold
=
cnn
.
run_nn
(
input_
,
output_
,
n_experiences
,
params
)
cnn
=
CNN_Antifrag
(
name
=
"CNN_
%
d_
%
d_
%
d_
%
d"
%
params
)
avg_acc
,
avg_auc
=
cnn
.
run_nn
(
input_
,
output_
,
params
)
if
avg_auc
>
max_avg_auc
:
if
avg_auc
>
max_avg_auc
:
max_avg_auc
=
avg_auc
max_avg_auc
=
avg_auc
max_params
=
params
max_params
=
params
X_train_kfold_opt
=
X_train_kfold
X_test_kfold_opt
=
X_test_kfold
#%%
y_train_kfold_opt
=
y_train_kfold
print
(
"Best params:"
,
max_params
)
y_test_kfold_opt
=
y_test_kfold
# once we have chosen the optimal parameters we can do the normal kfold
# once we have chosen the optimal parameters we can do the normal kfold
cnn
=
CNN_Antifrag
(
name
=
"CNN_
%
d_
%
d_
%
d_
%
d"
%
max_params
)
#note: the test data remains unbalanced
acc
,
auc
,
cm
,
pr
=
cnn
.
run_kfold
(
input_
,
output_
,
max_params
)
acc
,
auc
,
cm
,
pr
=
cnn
.
run_kfold
(
X_train_kfold_opt
,
X_test_kfold_opt
,
y_train_kfold_opt
,
y_test_kfold_opt
,
max_params
)
#to add: precision recall curve
#to add: precision recall curve
#%%
labels
=
[
'~robust&~evolvable'
,
'evolvable&~robust'
,
'robust&~evolvable'
,
'robust&evolvable'
]
labels
=
[
plot_confusion_matrix
(
cm
,
labels
)
#this function saves the matrix image automatically
'[~R & ~E]'
,
'[~R & E]'
,
f
=
open
(
"acc_auc.txt"
,
'w+'
)
'[ R & ~E]'
,
'[ R & E]'
]
#this function saves the matrix image automatically
plot_confusion_matrix
(
cm
,
labels
)
f
=
open
(
"out/acc_auc.txt"
,
'w+'
)
f
.
write
(
"Average accuracy: "
+
str
(
acc
)
+
"
\n
"
)
f
.
write
(
"Average accuracy: "
+
str
(
acc
)
+
"
\n
"
)
f
.
write
(
"Average area under the curve: "
+
str
(
auc
))
f
.
write
(
"Average area under the curve: "
+
str
(
auc
))
f
.
close
()
f
.
close
()
## TO DO: code that allows to execute in parallel, make sure it's the same random shuffle ...
models.py
View file @
66cff740
...
@@ -61,14 +61,23 @@ def model_architecture(c):
...
@@ -61,14 +61,23 @@ def model_architecture(c):
model
.
add
(
Dropout
(
0.5
))
model
.
add
(
Dropout
(
0.5
))
model
.
add
(
Dense
(
num_classes
,
activation
=
'softmax'
))
model
.
add
(
Dense
(
num_classes
,
activation
=
'softmax'
))
return
model
return
model
def
choose_batch_epochs
(
b
,
e
):
def
choose_batch_epochs
(
b
,
e
):
if
b
==
0
and
e
==
0
:
if
b
==
0
and
e
==
0
:
return
16
,
12
8
return
16
,
12
if
b
==
0
and
e
==
1
:
if
b
==
0
and
e
==
1
:
return
16
,
512
return
16
,
512
if
b
==
1
and
e
==
0
:
if
b
==
1
and
e
==
0
:
return
64
,
12
8
return
64
,
12
if
b
==
1
and
e
==
1
:
if
b
==
1
and
e
==
1
:
return
64
,
512
return
64
,
512
def
choose_balancing_method
(
o
):
if
o
==
0
:
return
'smote'
elif
o
==
1
:
return
'adasyn'
elif
o
==
2
:
return
'class_weight'
\ No newline at end of file
output_convert.py
View file @
66cff740
def
output_convert
(
N
,
e
,
r
):
from
itertools
import
product
"""
output meaning:
B
=
[
0
,
1
]
0 : not evolv. and not rob.
converter
=
{(
e
,
r
):[
i
]
for
(
e
,
r
),
i
in
zip
(
product
(
B
,
B
),
range
(
4
))}
1 : evol. and not rob.
2 : not evol. and rob.
def
output_convert
(
e
,
r
):
3 : evol. and rob.
"""
"""
Encodes outputs as integers
output
=
[]
if
(
e
[
0
]):
Parameters
if
(
r
[
0
]):
-----------
output
.
append
(
3
)
e : 1 evolvable, 0 not evolvable
else
:
output
.
append
(
1
)
r : 1 robust, 0 not robust
elif
(
r
[
0
]):
output
.
append
(
2
)
Returns
else
:
output
.
append
(
0
)
-----------
return
output
the encoded output
output meaning:
0 : not evolv. and not rob.
1 : evol. and not rob.
2 : not evol. and rob.
3 : evol. and rob.
"""
return
converter
[
r
,
e
]
parser.py
View file @
66cff740
import
numpy
as
np
import
numpy
as
np
import
pandas
as
pd
import
pandas
as
pd
import
output_convert
as
oc
import
output_convert
as
oc
import
os
from
scipy.interpolate
import
interp1d
as
interp
def
parse_data
(
n_experiences
):
def
interpolate
(
y
,
K
,
kind
=
'linear'
):
N_DATA
=
n_experiences
#from 2 to 1001
"""
#DATA PARSING
Interpolates vector x
X
=
[]
Parameters
----------
y : list of real numbers
dependen variable values.
K : integer
samples to interpolate
Returns
-------
the interpolation values
"""
N
=
len
(
y
)
x
=
np
.
arange
(
1
/
N
,
1
+
1
/
N
,
1
/
N
)
f
=
interp
(
x
,
y
,
kind
=
kind
,
fill_value
=
"extrapolate"
)
xintp
=
np
.
arange
(
1
/
K
,
1
+
1
/
K
,
1
/
K
)
return
f
(
xintp
)
def
parse_data
(
n_experiences
,
folder
=
"data"
,
samples
=
30
,
kind
=
'linear'
):
N_DATA
=
n_experiences
#from 2 to 10001
input_
=
[]
input_
=
[]
output_
=
[]
output_
=
[]
N0
=
15
#15 or 20
#table of the name of the bionets
#table of the name of the bionets
str_
=
[
"arabidopsis"
,
"cardiac"
,
"cd4"
,
"mammalian"
,
"metabolic"
,
"anemia"
,
"aurka"
,
"b-cell"
,
"body-drosophila"
,
"bt474"
,
"bt474-ErbB"
,
"cycle-cdk"
,
"fgf-drosophila"
,
"gonadal"
,
"hcc1954"
,
"hcc1954-ErbB"
,
"hh-drosophila"
,
"l-arabinose-operon"
,
"leukemia"
,
"neurotransmitter"
,
"oxidative-stress"
,
"skbr-long"
,
"skbr3-short"
,
"spz-drosophila"
,
"t-lgl-survival"
,
"tol"
,
"toll-drosophila"
,
"trichostrongylus"
,
"vegf-drosophila"
,
"wg-drosophila"
,
"yeast-cycle"
,
"aspergillus-fumigatus"
,
"budding-yeast"
,
"gene-cardiac"
,
"t-cell-differentiation"
,
"lac-operon-bistability"
,
"core-cell-cycle"
,
"cortical"
]
str_
=
[
'anemia'
,
'cd4'
,
'lac-operon'
,
'spz-drosophila'
,
'arabidopsis'
,
'core-cell-cycle'
,
'lac-operon-bistability'
,
't-cell-differentiation'
,
'aspergillus-fumigatus'
,
'cortical'
,
'l-arabinose-operon'
,
't-lgl-survival'
,
'aurka'
,
'cycle-cdk'
,
'leukemia'
,
'tol'
,
'b-cell'
,
'fgf-drosophila'
,
'mammalian'
,
'trichostrongylus'
,
'body-drosophila'
,
'gene-cardiac'
,
'metabolic'
,
'vegf-drosophila'
,
'bt474'
,
'gonadal'
,
'neurotransmitter'
,
'wg-drosophila'
,
'bt474-ErbB'
,
'hcc1954'
,
'oxidative-stress'
,
'yeast-cycle'
,
'budding-yeast'
,
'hcc1954-ErbB'
,
'skbr3-long'
,
'cardiac'
,
'hh-drosophila'
,
'skbr3-short'
]
for
s
in
str_
:
for
s
in
str_
:
dataXi_original
=
pd
.
read_csv
(
"updated_data/"
+
s
+
"/"
+
s
+
"_metrics.csv"
,
sep
=
","
,
header
=
0
)
data
=
pd
.
read_csv
(
N
=
int
(
dataXi_original
.
loc
[
1
,
'N'
])
os
.
path
.
join
(
folder
,
s
,
s
+
"_metrics.csv"
),
sep
=
","
,
header
=
0
)
antifragility_original
=
list
(
np
.
array
(
dataXi_original
.
loc
[:,
'Antifragility'
])
.
astype
(
float
))
# 15 or 20 points describing the relationship between the original values of antifragility in the network before perturbations and X/N
X_tmp
=
list
(
np
.
arange
(
1
,
N
+
1
,
1
))
X_N
=
[
X_tmp
[
i
]
/
N
for
i
in
range
(
N
)]
original_points
=
[
np
.
interp
(
i
/
N0
,
X_N
,
antifragility_original
)
for
i
in
range
(
1
,
N0
+
1
)]
for
i
in
range
(
1
,
N_DATA
):
# 30 points describing the relationship between the original
#read the data for each experience
# values of antifragility in the network before perturbations and X/N
n
=
format
(
i
,
'09'
)
before
=
interpolate
(
dataXi_tmp
=
pd
.
read_csv
(
"updated_data/"
+
s
+
"/"
+
s
+
"_"
+
n
+
"_metrics.csv"
,
sep
=
","
,
header
=
0
)
np
.
array
(
data
.
loc
[:,
'Antifragility'
])
.
astype
(
float
),
samples
,
kind
=
kind
)
for
i
in
range
(
N_DATA
):
#read the data for each experience
n
=
format
(
i
+
1
,
'09'
)
data
=
pd
.
read_csv
(
os
.
path
.
join
(
folder
,
s
,
s
+
"_"
+
n
+
"_metrics.csv"
),
sep
=
","
,
header
=
0
)
antifragility_tmp
=
list
(
np
.
array
(
dataXi_tmp
.
loc
[:,
'Antifragility'
])
.
astype
(
float
))
#antifragility of the mutant
after
=
interpolate
(
np
.
array
(
data
.
loc
[:,
'Antifragility'
])
.
astype
(
float
),
samples
,
kind
=
kind
)
# computes the difference of the antifragility curves
input_tmp
=
after
-
before
input_tmp
=
original_points
+
[
np
.
interp
(
i
/
N0
,
X_N
,
antifragility_tmp
)
for
i
in
range
(
1
,
N0
+
1
)]
evolvable_tmp
=
list
(
np
.
array
(
data
.
loc
[:,
'Evolvability'
])
.
astype
(
int
))
robust_tmp
=
list
(
np
.
array
(
data
.
loc
[:,
'Robustness'
])
.
astype
(
int
))
evolvable_tmp
=
list
(
np
.
array
(
dataXi_tmp
.
loc
[:,
'Evolvability'
])
.
astype
(
int
))
# even though evolvable_tmp and robust_tmp are vectors,
robust_tmp
=
list
(
np
.
array
(
dataXi_tmp
.
loc
[:,
'Robustness'
])
.
astype
(
int
))
# all entries are the same, we take the first
output_tmp
=
oc
.
output_convert
(
N
,
evolvable_tmp
,
robust_tmp
)
output_tmp
=
oc
.
output_convert
(
evolvable_tmp
[
0
],
robust_tmp
[
0
]
)
input_
.
append
(
input_tmp
)
input_
.
append
(
input_tmp
)
output_
+=
output_tmp
output_
+=
output_tmp
input_
=
np
.
array
(
input_
)
input_
=
np
.
array
(
input_
)
output_
=
np
.
array
(
output_
)
output_
=
np
.
array
(
output_
)
...
...
prec_recall.py
View file @
66cff740
...
@@ -31,7 +31,7 @@ def plot_pr(recall, precision, average_precision):
...
@@ -31,7 +31,7 @@ def plot_pr(recall, precision, average_precision):
plt
.
ylim
([
0.0
,
1.05
])
plt
.
ylim
([
0.0
,
1.05
])
plt
.
xlim
([
0.0
,
1.0
])
plt
.
xlim
([
0.0
,
1.0
])
plt
.
title
(
'Average precision score, micro-averaged over all classes: AP={0:0.2f}'
.
format
(
average_precision
[
"micro"
]))
plt
.
title
(
'Average precision score, micro-averaged over all classes: AP={0:0.2f}'
.
format
(
average_precision
[
"micro"
]))
plt
.
savefig
(
"
precision_recall_curve
"
)
plt
.
savefig
(
"
out/precision_recall_curve.pdf
"
)
#plt.show()
#plt.show()
plt
.
close
()
plt
.
close
()
...
@@ -67,4 +67,4 @@ def avg_pr(n_splits, num_classes, recs_k, precs_k, avgs_k):
...
@@ -67,4 +67,4 @@ def avg_pr(n_splits, num_classes, recs_k, precs_k, avgs_k):
plt
.
ylim
([
0.0
,
1.05
])
plt
.
ylim
([
0.0
,
1.05
])
plt
.
xlim
([
0.0
,
1.0
])
plt
.
xlim
([
0.0
,
1.0
])
plt
.
title
(
'Average precision score, over class {0}: AP={1:0.2f}'
.
format
(
i
,
avg_prec
[
i
]))
plt
.
title
(
'Average precision score, over class {0}: AP={1:0.2f}'
.
format
(
i
,
avg_prec
[
i
]))
plt
.
savefig
(
"
pr_curve_class_"
+
str
(
i
)
)
plt
.
savefig
(
"
out/pr_curve_class_"
+
str
(
i
)
+
".pdf"
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment