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1.1 INTRODUCTION

Many real-world engineering design or decision making problems involve si-
multaneous optimization of multiple objectives. The principle of multi-criterion
optimization is different from that in a single-objective optimization. In single-
objective optimization, the goal is to find the best design solution, which cor-
responds to the minimum or maximum value of the objective function [9, 34].
On the contrary, in a multi-criterion optimization with conflicting objectives,
there is no single optimal solution. The interaction among different objectives
gives rise to a set of compromised solutions, largely known as the Pareto-
optimal solutions [40, 2]. Since none of these Pareto-optimal solutions can be
identified as better than others without any further consideration, the goal
in a multi-criterion optimization is to find as many Pareto-optimal solutions
as possible. Once such solutions are found, it usually requires a higher-level
decision-making with other considerations to choose one of them for imple-
mentation. Here, we address the first task of finding multiple Pareto-optimal
solutions. There are two objectives in a multi-criterion optimization: (i) find
solutions close to the true Pareto-optimal solutions and (ii) find solutions that
are widely different from each other. The first task is desired to satisfy op-
timality conditions in the obtained solutions. The second task is desired to
have no bias towards any particular objective function.
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In dealing with multi-criterion optimization problems, classical search and
optimization methods are not efficient, simply because (i) most of them cannot
find multiple solutions in a single run, thereby requiring them to be applied as
many times as the number of desired Pareto-optimal solutions, (ii) multiple
application of these methods do not guarantee finding widely different Pareto-
optimal solutions, and (iii) most of them cannot efficiently handle problems
with discrete variables and problems having multiple optimal solutions [9].
On the contrary, the studies on evolutionary search algorithms, over the past
few years, have shown that these methods can be efficiently used to eliminate
most of the above difficulties of classical methods [38, 19, 26]. Since they use
a population of solutions in their search, multiple Pareto-optimal solutions
can, in principle, be found in one single run. The use of diversity-preserving
mechanisms can be added to the evolutionary search algorithms to find widely
different Pareto-optimal solutions.

In this paper, we briefly outline the principles of multi-objective optimiza-
tion. Thereafter, we discuss why classical search and optimization methods
are not adequate for multi-criterion optimization by discussing the working
of two popular methods. We then outline several evolutionary methods for
handling multi-criterion optimization problems. Of them, we discuss one im-
plementation (non-dominated sorting GA or NSGA [38]) in somewhat greater
details. Thereafter, we demonstrate the working of the evolutionary meth-
ods by applying NSGA to three test problems having constraints and dis-
continuous Pareto-optimal region. We also show the efficacy of evolutionary
algorithms in engineering design problems by solving a welded beam design
problem. The results show that evolutionary methods can find widely differ-
ent yet near-Pareto-optimal solutions in such problems. Based on the above
studies, this paper also suggests a number of immediate future studies which
would make this emerging field more mature and applicable in practice.

1.2 PRINCIPLES OF MULTI-CRITERION OPTIMIZATION

The principles of multi-criterion optimization are different from that in a
single-objective optimization. The main goal in a single-objective optimiza-
tion is to find the global optimal solution, resulting in the optimal value for the
single objective function. However, in a multi-criterion optimization problem,
there are more than one objective function, each of which may have a different
individual optimal solution. If there is sufficient difference in the optimal so-
lutions corresponding to different objectives, the objective functions are often
known as conflicting to each other. Multi-criterion optimization with such
conflicting objective functions gives rise to a set of optimal solutions, instead
of one optimal solution. The reason for the optimality of many solutions is
that no one can be considered to be better than any other with respect to
all objective functions. These optimal solutions have a special name—Pareto-
optimal solutions. Let us illustrate this aspect with a hypothetical example
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problem shown in Figure 1.1. The figure considers two objectives—cost and
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Fig. 1.1 The concept of Pareto-optimal solutions is illustrated.

accident rate—both of which are to be minimized. The point A represents a
solution which incurs a near-minimal cost, but is highly accident-prone. On
the other hand, the point B represents a solution which is costly, but is near
least accident-prone. If both objectives (cost and accident rate) are impor-
tant goals of design, one cannot really say whether solution A is better than
solution B, or vice versa. One solution is better than other in one objective,
but is worse in the other. In fact, there exist many such solutions (like solu-
tion D) which also belongs to the Pareto-optimal set and one cannot conclude
about an absolute hierarchy of solutions A, B, D, or any other solution in the
set. All these solutions (in the front marked by the dashed line) are known as
Pareto-optimal solutions.

Looking at the figure, we also observe that there exists non-Pareto-optimal
solutions, like the point C. If we compare solution C with solution A, we
again are in a fix and cannot say whether one is better than the other in both
objectives. Does this mean that solution C is also a member of the Pareto-
optimal set. The answer is no. This is because there exists another solution D
in the search space, which is better than solution C in both objectives. That
is why solutions like C are known as dominated solutions or inferior solutions.

It i1s now clear that the concept of optimality in multi-criterion optimization
deals with a number (or a set) of solutions, instead of one solution. Based
on the above discussions, we first define conditions for a solution to become
dominated with respect to another solution and then present conditions for a
set of solutions to become a Pareto-optimal set.

For a problem having more than one objective function (say, f;, j =
1,...,M and M > 1), any two solutions (1) and z(?) can have one of two
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possibilities—one dominates the other or none dominates the other. A so-
lution (1) is said to dominate the other solution z(?), if both the following
conditions are true:

1. The solution z(!) is no worse (say the operator < denotes worse and >
denotes better) than z(?) in all objectives, or fj(az(l)) A fj(:p@)) for all
j=1,2,..., M objectives.

2. The solution z(!) is strictly better than 2(?) in at least one objective, or
fj(m(l)) - fj(m(g)) for at least one j € {1,2,..., M}.

If any of the above condition is violated, the solution (1) does not dominate
the solution z(?). If (1) dominates the solution z(?), it is also customary to
write 2(?) is dominated by z(!), or (1) is non-dominated by z(?, or, simply,
among the two solutions, (1) is the non-dominated solution.

The following definitions ensure whether a set of solutions belong to a local
or global Pareto-optimal set, similar to the definitions of local and global
optimal solutions in single-objective optimization problems:

Local Pareto-optimal Set: If for every member z in a set P, there exist no
solution y satisfying ||y — #||ecc < €, where € is a small positive number
(in principle, y is obtained by perturbing z in a small neighborhood),
which dominates any member in the set P, then the solutions belonging
to the set P constitute a local Pareto-optimal set.

Global Pareto-optimal Set: If there exists no solution in the search space
which dominates any member in the set P, then the solutions belonging
to the set P constitute a global Pareto-optimal set.

We would like to highlight here that there exists a difference between a non-
dominated set and a Pareto-optimal set. A non-dominated set is defined in
the context of a sample of the search space. In a sample of search points,
solutions that are not dominated (according to the above definition) by any
other solutions in the sample space are non-dominated solutions. A Pareto-
optimal set is a non-dominated set, when the sample is the entire search space.

From the above discussions, we observe that there are primarily two goals
that a multi-criterion optimization algorithm must achieve:

1. Guide the search towards the global Pareto-optimal region, and
2. Maintain population diversity in the Pareto-optimal front.

The first task is a natural goal of any optimization algorithm. The second
task is unique to multi-criterion optimization'. Since no one solution in the

Tn multi-modal optimization problems, often, the goal is also to find multiple global optimal
solutions simultaneously [14, 22].
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Pareto-optimal set can be said to be better than the other, what an algorithm
can do best is to find as many different Pareto-optimal solutions as possible.

We now review a couple of popular classical search and optimization meth-
ods briefly and discuss why there i1s a need for better algorithms for multi-
criterion optimization.

1.3 CLASSICAL METHODS

Here, we shall discuss two popular classical optimization methods used for
solving multi-criterion optimization problems.

1.3.1 Weighted Sum Method

Multiple objective functions are combined into one overall objective function,
F | as follows:
L. M o
Minimize {7 = ijl w; f; (), (1.1)
reF,

where w; is the weight used for the j-th objective function f;(£). Usually,

non-zero fractional weights are used so that sum of all weights Zjle w; is
equal to one. All Pareto-optimal solutions must lie in the feasible region F.
The procedure is simple. Choose a random weight vector and optimize the
single-objective function F to get an optimal solution. Hopefully, the obtained
optimal solution belongs to the set of the desired Pareto-optimal set. In order
to get different Pareto-optimal solutions, choose different random vectors and
optimize the resulting F in each case. We illustrate the working of this method
in a hypothetical problem shown in Figure 1.2. The figure shows the feasible
search space in the function space, having two objectives (which are to be
minimized). Each point inside the feasible region represents a solution (%)
having two objective function values (such as cost and accident rate). Fixing
a weight vector and optimizing equation 1.1 means finding a hyper-plane
(a line for two objective functions) with a fixed orientation in the function
space. The optimal solution is the point where a hyperplane having this fixed
orientation has a common tangent with the feasible search space. We show
this solution as the point A in the figure, where the line with intercepts at
the fi and f5 axes in proportions of ws and wy, respectively, is tangent to the
feasible region. One can now imagine finding other solutions such as B or C
by choosing a different weight vector and finding the corresponding common
tangent point again. A collection of such solutions (A, B, C, and others)
constitute the Pareto-optimal set (shown by a thick line). Although such a
simple strategy is intuitively a computationally expensive method, there is a
major difficulty with such a method.

This weighted sum method cannot be used to find Pareto-optimal solutions
in multi-criterion optimization problems having a non-convex Pareto-optimal
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front. In Figure 1.2, the Pareto-optimal front is convex. But, one can also
think of multi-criterion optimization problems having a non-convex Pareto-
optimal front (Figure 1.3). In this figure, fixing a different weight vector and
finding the tangents closest to the origin do not give rise to finding different
Pareto-optimal solutions. For every weight vector, only the solutions A or B
will be found, and all other Pareto-optimal solutions within A and B cannot

be found.

1.3.2 The e-perturbation method

In order to remedy the above difficulty, a single-objective optimization prob-
lem 1s constructed in which all but one objectives are used as constraints and
only one is used as the objective function:

Minimize fi (%),
Subject to  f;(Z) <¢; Vj#k, (1.2)
rerF.

To find one Pareto-optimal solution, a suitable value of ¢; is chosen for the
J-th objective function (where j # k). Thereafter, the above single-objective
constraint optimization problem is solved to find the solution A. This proce-
dure is continued with different values of ¢; to find different Pareto-optimal
solutions. Figure 1.4 shows that this method can find non-convex Pareto-
optimal solutions. However, there also exists a difficulty with this method. A
knowledge of an appropriate range of ¢; values for each objective function is
required to be known a priori.

Although there exists a few other methods such as goal programming,
min-max method, and others [40], all methods require some kind of problem
knowledge. The most profound difficulty with all these methods is that all
need to be applied many times, hopefully finding one different Pareto-optimal
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Fig. 1.4 The e-perturbation method is illustrated. The first objective function is
used as a constraint fi (f) < €.

solution each time. This makes the methods unattractive and this is one of
the reasons why multi-criterion optimization problems are mostly avoided in

practice. Based on the above discussions, we summarize the difficulties with
the classical optimization methods:

1. An algorithm is needed to be applied many times to find multiple Pareto-
optimal solutions,

2. Most algorithms demand some knowledge about the problem being
solved,

3. Some algorithms are sensitive to the shape of the Pareto-optimal front,

4. The spread of Pareto-optimal solutions depends on efficiency of the
single-objective optimizer,

5. In problems involving uncertainties or stochasticities, classical methods
are not reliable,

6. Since classical single-objective optimizers are not efficient in handling
discrete search space problems [9, 13], they will also not be efficient for
multi-criterion optimization problems having discrete search space.

The first difficulty can be eliminated if an appropriate population-based search
algorithm is used and special operators are used to emphasize maintenance of
multiple Pareto-optimal solutions in the population. However, all the above
difficulties can be handled by using an evolutionary search algorithm. In the

following, we briefly describe a number of evolutionary-based implementations
and describe one such method in details.
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1.4 EVOLUTIONARY METHODS

As early as in 1967, Rosenberg suggested, but did not simulate, a genetic
search method for finding the chemistry of a population of single-celled or-
ganisms with multiple properties or objectives [35]. However, the first prac-
tical implementation was suggested by David Schaffer in the year 1984 [36].
Thereafter, no significant study was performed for almost a decade, except a
revolutionary 10-line sketch of a new non-dominated sorting procedure out-
lined in David Goldberg’s book [20]. The book came out in the year 1989.
Getting a clue for an efficient multi-objective optimization technique, many
researchers developed different versions of multi-objective optimization algo-
rithms [38, 19, 26] based on their interpretations of the 10-line sketch. The idea
was so sound and appropriate, that almost any such implementation has been
successful in many test problems. The publication of the above-mentioned al-
gorithms showed the superiority of evolutionary multi-criterion optimization
techniques over classical methods, and since then there has been no looking
back. Many researchers have modified the above-mentioned approaches and
developed their own versions. Many researchers have also applied these tech-
niques to more complex test problems and to real-world engineering design
problems. Till to date, most of the successful evolutionary implementations
for multi-criterion optimization rely on the concept of non-domination. Al-
though there are other concepts that can be used to develop a search algorithm
[28], the concept of non-domination is simple to use and understand. However,
a recent study [7] has shown that search algorithms based on non-domination
need not always lead to the true Pareto-optimal front. The algorithm can get
stuck to a non-dominated front which is different from the true Pareto-optimal
front. This exception is in the details of the implementational issues and we
would not like to belabor this here, simply because in most test problems
tried so far most of the search algorithms based on non-domination concept
has found the true Pareto-optimal front.

With the development of many new algorithms, many researchers have
attempted to summarize the studies in the field from different perspectives
[18, 25, 42, 3]. These reviews list many different techniques of multi-criterion
optimization that exist to date.

We now present a brief summary of a few salient evolutionary multi-
criterion optimization algorithms.

1.4.1 Schaffer’s VEGA

Schaffer [36] modified the simple tripartite genetic algorithm by performing
independent selection cycles according to each objective. He modified the
public-domain GENESIS software by creating a loop around the traditional
selection procedure so that the selection method is repeated for each individual
objective to fill up a portion of the mating pool. Then the entire population
is thoroughly shuffled to apply crossover and mutation operators. This is
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performed to achieve the mating of individuals of different subpopulation
groups.

The algorithm worked efficiently for some generations but in some cases
suffered from its bias towards some individuals or regions. The indepen-
dent selection of specialists resulted in speciation in the population. The
outcome of this effect is the convergence of the entire population towards
the individual optimum regions after a large number of generations. From
a designer’s point of view, it is not desirable to have any bias towards such
middling individuals, rather it is of interest to find as many non-dominated
solutions as possible. Schaffer tried to minimize this speciation by developing
two heuristics—the non-dominated selection heuristic (a wealth redistribution
scheme), and the mate selection heuristic (a cross breeding scheme) [36, 37].
In the non-dominated selection heuristic, dominated individuals are penalized
by subtracting a small fixed penalty from their expected number of copies dur-
ing selection. Then the total penalty for dominated individuals was divided
among the non-dominated individuals and was added to their expected num-
ber of copies during selection. But this algorithm failed when the population
has very few non-dominated individuals, resulting in a large fitness value for
those few non-dominated points, eventually leading to a high selection pres-
sure. The mate selection heuristic was intended to promote the cross breeding
of specialists from different subgroups. This was implemented by selecting an
individual, as a mate to a randomly selected individual, which has the max-
imum Euclidean distance in the performance space from its mate. But it
failed too to prevent the participation of poorer individuals in the mate selec-
tion. This is because of random selection of the first mate and the possibility
of a large Euclidean distance between a champion and a mediocre. Schaffer
concluded that the random mate selection is far superior than this heuristic.

1.4.2 Fonseca amd Fleming’s multi-objective GA

Fonesca and Fleming [19] implemented Goldberg’s suggestion in a different
way. In this study, the multi-objective optimization GA (MOGA) uses a non-
dominated sorting procedure. In MOGA, the whole population is checked
and all non-dominated individuals are assigned rank ‘1’. Other individuals
are ranked by checking the non-dominance of them with respect to the rest
of the population in the following way. For an individual solution, the num-
ber of solutions that strictly dominate it in the population is first found.
Thereafter, the rank of that individual is assigned to be one more than that
number. Therefore, at the end of this ranking procedure, there may exist
many solutions having the same rank. The selection procedure then uses
these ranks to select or delete blocks of points to form the mating pool. As
discussed elsewhere [21], this type of blocked fitness assignment is likely to
produce a large selection pressure which might cause premature convergence.
MOGA also uses a niche-formation method to distribute the population over
the Pareto-optimal region. But instead of performing sharing on the parame-
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ter values, they have used sharing on objective function values. Even though
this maintain diversity in the objective function values, this may not main-
tains diversity in the parameter set, a matter which is important for a decision
maker. Moreover, MOGA may not be able to find multiple solutions in prob-
lems where different Pareto-optimal points correspond to the same objective
function value [7]. However, the ranking of individuals according to their
non-dominance in the population is an important aspect of this work.

1.4.3 Horn, Nafploitis, and Goldberg’s Niched Pareto GA

Horn, Nafploitis, and Goldberg [26] used a Pareto domination tournaments in-
stead of non-dominated sorting and ranking selection method in solving multi-
objective optimization problems. In this method, a comparison set comprising
of a specific number (¢4om ) of individuals is picked at random from the popu-
lation at the beginning of each selection process. Two random individuals are
picked from the population for selecting a winner in a tournament selection
according to the following procedure. Both individuals are compared with
the members of the comparison set for domination with respect to objective
functions. If one of them is non-dominated and the other is dominated, then
the non-dominated point is selected. On the other hand, if both are either
non-dominated or dominated, a niche count is found for each individual in
the entire population. The niche count is calculated by simply counting the
number of points in the population within a certain distance (oshare) from
an individual. The individual with least niche count 1is selected. The effect
of multiple objectives is taken into the non-dominance calculation. Since this
non-dominance is computed by comparing an individual with a randomly cho-
sen population set of size 4,1, the success of this algorithm highly depends
on the parameter tg,,,. If a proper size is not chosen, true non-dominated
(Pareto-optimal) points may not be found. If a small ¢4om, is chosen, this
may result in a few non-dominated points in the population. Instead, if a
large t4om 18 chosen, premature convergence may result. This aspect 1s also
observed by the authors. They have presented some empirical results with
various t4,m values. Nevertheless, the concept of niche formation among the
non-dominated points is an important aspect of this work.

1.4.4 Zitzler and Theile’s strength Pareto approach (SPEA)

Zitzler and Theile [44] have recently suggested an elitist multi-criterion EA
with the concept of non-domination. They suggested maintaining an external
population at every generation storing a set of non-dominated solutions dis-
covered so far beginning from the initial population. This external population
participates in genetic operations. The fitness of each individual in the cur-
rent population and in the external population is decided based on the number
of dominated solutions. Specifically, the following procedure is adopted. A
combined population with the external and the current population is first
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constructed. All non-dominated solutions in the combined population are as-
signed a fitness based on the number of solutions they dominate. To maintain
diversity and in the context of minimizing the fitness function, they assigned
more fitness to a non-dominated solution having more dominated solutions in
the combined population. On the other hand, more fitness is also assigned
to solutions dominated by more solutions in the combined population. Care
is taken to assign no non-dominated solution a fitness worse than that of the
best dominated solution. This assignment of fitness makes sure that the search
is directed towards the non-dominated solutions and simultaneously diversity
among dominated and non-dominated solutions are maintained. On knapsack
problems, they have reported better results than any other method used for
comparison in that study. However, such comparisons of algorithms is not ap-
propriate, simply because SPEA approach uses a inherent elitism mechanism
of using best non-dominated solutions discovered up to the current generation,
whereas other algorithms do not use any such mechanism. Nevertheless, an
interesting aspect of that study is that it shows the importance of introducing
elitism in evolutionary multi-criterion optimization. Similar effect of elitism
in multi-criterion optimization was also observed elsewhere [30].

1.4.5 Srinivas and Deb’s non-dominated sorting genetic
algorithm (NSGA)

Srinivas and Deb [38] have implemented Goldberg’s idea most directly. The
idea behind NSGA is that a ranking selection method is used to emphasize
current non-dominated points and a niching method is used to maintain diver-
sity in the population. We describe the NSGA procedure in somewhat more
details.

NSGA varies from a simple genetic algorithm only in the way the selection
operator in used. The crossover and mutation operators remain as usual. Be-
fore the selection is performed, the population is first ranked on the basis of an
individual’s non-domination level, which is found by the following procedure,
and then a fitness is assigned to each population member.

1.4.5.1 Fitness assignment: Consider a set of N population members,
each having M (> 1) objective function values. The following procedure can
be used to find the non-dominated set of solutions:

Step 0: Begin with ¢ = 1.

Step 1: For all j = 1,...,N and j # i, compare solutions 2 and zU) for
domination using two conditions (page iv) for all M objectives.

Step 2: If for any j, z(¥) is dominated by z(/), mark z() as ‘dominated’.

Step 3: If all solutions (that is, when ¢ = N is reached) in the set are con-
sidered, Go to Step 4, else increment ¢ by one and Go to Step 1.
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Step 4: All solutions that are not marked ‘dominated’ are non-dominated
solutions.

All these non-dominated solutions are assumed to constitute the first non-
dominated front in the population and assigned a large dummy fitness value
(we assign a fitness N). The same fitness value is assigned to give an equal
reproductive potential to all these non-dominated individuals. In order to
maintain diversity in the population, these non-dominated solutions are then
shared with their dummy fitness values. Sharing methods are discussed else-
where in details [11, 22]; we give a brief description of the sharing procedure
in the next subsection. Sharing is achieved by dividing the dummy fitness
value of an individual by a quantity (called the niche count) proportional to
the number of individuals around it. This procedure causes multiple optimal
points to co-exist in the population. The worst shared fitness value in the
solutions of the first non-dominated front is noted for further use.

After sharing, these non-dominated individuals are ignored temporarily to
process the rest of population members. The above step-by-step procedure is
used to find the second level of non-dominated solutions in the population.
Once they are identified, a dummy fitness value which is a little smaller than
the worst shared fitness value observed in solutions of first non-dominated
set is assigned. Thereafter, the sharing procedure is performed among the
solutions of second non-domination level and shared fitness values are found
as before. This process is continued till all population members are assigned
a shared fitness value.

The population is then reproduced with the shared fitness values. A
stochastic remainder proportionate selection [20] is used in this study. Since
individuals in the first front have better fitness values than solutions of any
other front, they always get more copies than the rest of population. This
was intended to search for non-dominated regions, which will finally lead to
the Pareto-optimal front. This results in quick convergence of the population
towards non-dominated regions and sharing procedure helps to distribute it
over this region.

Another aspect of this method is that practically any number of objectives
can be used. Both minimization and maximization problems can also be
handled by this algorithm. The only place a change is required for the above
two cases is the way the non-dominated points are identified (according to the
definition outlined on page iv).

1.4.5.2 Sharing procedure: Given a set of ny solutions in the k-th non-
dominated front each having a dummy fitness value fy, the sharing procedure
is performed in the following way for each solution ¢ = 1,2, ... ng:
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Step 1: Compute a normalized Euclidean distance measure with another so-
lution j in the k-th non-dominated front, as follows:

P 0 _ 0\ ?
x — X

di; = Puip)
;(mfﬂ_fé

where P is the number of variables in the problem. The parameters x

u

P
and ‘J}é are the upper and lower bounds of variable z,.

Step 2: This distance d;; is compared with a pre-specified parameter oghare
and the following sharing function value is computed [22]:

Sh(d;j) = { 1= (aiﬁ)z’ if dij < Oshare,

0, otherwise.

Step 3: Increment j. If j < ng, go to Step 1 and calculate Sh(d;;). If j > ng,
calculate niche count for i-th solution as follows:

j=1

Step 4: Degrade the dummy fitness f; of i-th solution in the k-th non-
domination front to calculate the shared fitness, f/, as follows:

/ fk
fi = —
This procedure is continued for all i = 1,2, ..., ng and a corresponding f/ is
found. Thereafter, the smallest value fénin of all f/ in the k-th non-dominated
front is found for further processing. The dummy fitness of the next non-
dominated front is assigned to be fry1 = }cnin — €, where ¢ is a small
positive number.

The above sharing procedure requires a pre-specified parameter oghare,
which can be calculated as follows [11]:

a1
Oshare N

v (1.3)
where ¢ is the desired number of distinct Pareto-optimal solutions. Although
the calculation of ghare depends on this parameter ¢, it has been been shown
elsewhere [7, 38] that the use of above equation with ¢ &~ 10 works in many
test problems. Moreover, the performance of NSGAs is not very sensitive to
this parameter near ognare values calculated using ¢ & 10.
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It may be mentioned here that the above sharing procedure can also be
implemented with a distance measure defined in the gene space. That is,
instead of the Euclidean distance measure as given above, d;; can also be
calculated using the number of bit differences (or the Hamming distance)
between solutions 7 and j [11]. Such distance measures will be useful in
problems where the problem is defined in the gene space [7]. The calculation
of Tshare 18 different in this case and interested readers may refer to the original
study for more details [11].

1.5 PROOF-OF-PRINCIPLE RESULTS

In this section, we apply NSGA to three test problems: (i) a single-variable
simple problem [36], (ii) a two-variable constrained problem [2], and (iii) a
two-variable problem having discontinuous Pareto-optimal region [7]. In all
simulations, we use binary-coded genetic algorithms [20, 24] with a single-
point crossover operator with probability one. Mutation probability is kept
zero in order to observe the effectiveness of NSGA alone. The parameters
are held constant across all runs. Unbiased initial population is generated by
randomly spreading solutions over the entire variable space in consideration.

1.5.1 Problem F1

This is a single-variable problem which has been widely used in the multi-
criterion optimization literature [36, 38]:

Minimize fi(z) = 22, 14
Minimize fa(z) = (z — 2)% (1.4)
Initial range for the design variable used in simulationsis (—100.0, 100.0). The
Pareto-optimal solutions lie in z € [0,2]. The variable is coded using binary
strings of size 30. We use a population size? of 100. The parameter ghare
is set to be 0.0002 here. This value induces about N or 100 niches in the
Pareto-optimal region. Figure 1.5 shows the population distribution in the
initial generation. The figure shows that the population is widely distributed.
With the above parameter settings, it is expected to have only one (out of
100) population member in the Pareto-optimal region. Thereafter, we show
the population of 100 members after 10 generations in Figure 1.6. The fig-
ure shows how quickly the NSGA has managed to get the population from
function values of about four order of magnitudes to one order of magnitude.

2 Although a much smaller population size will also be able to find Pareto-optimal solutions,
this rather large population size is chosen for a specific purpose. This will allow creation
of around 100 niches in the Pareto-optimal region, demonstrating that a large number of
different niches can be found and maintained in the population using the sharing procedure.
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However, most of the population members are now inside the Pareto-optimal
region. Figure 1.7 shows the population history at generation 100. All pop-
ulation members are now inside the Pareto-optimal region and notice how
the population gets uniformly distributed over the Pareto-optimal region. Fi-
nally, Figure 1.8 shows the population at generation 500. NSGAs are run so
long just to show that they have the capabilities of maintaining a sustainable
wide-spread population over the entire Pareto-optimal region.
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1.5.2 Problem F2

Next, we consider a two-variable problem with constraints [2, 15]:

Minimize f1(%) =2+ (z1 — 2)? + (22 — 1)?,
Minimize f2(¥) = 92 (:132 — 1) (1.5)
Subject to g1 (%) = 220 —z? —22>0, ’
gQ(f) = 3I2 — X — 10 > 0.

Both variables are initialized in the range [—20.0,20.0]. Both variables are
coded using binary strings of size 15. We handle constraints by first normal-
izing them and then using the bracket-operator penalty function [9] with a
penalty parameter 10%. It was shown in an earlier study [38], that resulting
Pareto-optimal region in this problem lies where both functions f; and f
are tangent to each other. This happens for ;1 = —2.5 in the unconstrained
problem. The addition of two constraints makes only a portion of the search
space feasible. Thus, the resulting Pareto-optimal region is as follows:

2y =25, 25< 2, <14.79.

Figure 1.9 shows the initial population of 100 solutions in the zi-z5 space.
The figure shows that although some of the solutions are feasible, most solu-
tions are infeasible in the initial population. Figure 1.10 shows the population
at generation 10. This figure shows that most population members are now in
the feasible region. At generation 20, Figure 1.11 shows that most population
members are close to the true Pareto-optimal front. Finally, Figure 1.12 shows
that even up to 200 generations the population is able to maintain solutions
in the true Pareto-optimal region.

1.5.3 Problem F3

We construct a multi-objective problem having a Pareto-optimal front which
is discontinuous [7]:

Minimize fi (%)

1
2
inimize £,(5) = (1 + 1052 (1—(1;%“) - e sin<8m1>)
(1.6)

Both #; and zs varies in the interval [0, 1] and are coded in binary strings
of size 15 each. The discontinuity in the Pareto-optimal region comes due to
the periodicity in function fy;. This function tests an algorithm’s ability to
maintain subpopulations in all discontinuous Pareto-optimal regions.

Figure 1.13 shows the 50,000 random solutions in fi-f> space. The discon-
tinuous Pareto-optimal regions are also shown by showing solid lines. When
NSGAs (population size of 200 and oghare of 0.1) are tried on this problem,
the resulting population at generation 300 is shown in Figure 1.14. The plot
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shown on a fi-f2 plot of a multi- tion 300 for a NSGA run is shown to have
objective problem having discontinuous found solutions in all four discontinuous
Pareto-optimal front. Pareto-optimal regions.

shows that if reasonable GA parameter values are chosen, NSGAs can find
Pareto-optimal solutions in discontinuous regions. A population size of 200
is deliberately used to have a wide distribution of solutions in all discontinu-
ous regions. A little thought will reveal that Pareto-optimal region comprises
of solutions 0 < z; < 1 and x5 = 0. It is interesting to note how NSGAs
avoid creating the non-Pareto-optimal solutions, although the corresponding
z value is same (and equal to zero) as that of the Pareto-optimal solutions.

1.6 AN ENGINEERING DESIGN

This problem has been well studied in the context of single-objective opti-
mization [34]. A beam needs to be welded on another beam and must carry
a certain load F' (Figure 1.15). In the context of single-objective optimal

~—___| 7"b

Fig. 1.15 The welded beam design problem. Minimizations of cost and end deflec-

tion are two objectives.
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design, it is desired to find four design parameters (thickness of the beam, b,
width of the beam ¢, length of weld ¢, and weld thickness &) for which the cost
of the beam is minimum. The overhang portion of the beam has a length of 14
inch and F = 6,000 Ib force is applied at the end of the beam. It is intuitive
that an optimal design for cost will make all four design variables to take small
values. When the beam dimensions are small, it 1s likely that the deflection
at the end of the beam is going to be large. In the parlance of mechanics
of materials, this means that the rigidity of the beam is smaller for smaller
dimensions of the beam. In mechanical design activities, optimal design for
maximum rigidity is also common. Again, a little thought will reveal that
a design for maximum rigidity of the above beam will make all four design
dimensions to take large dimensions. Thus, the design solutions for minimum
cost and maximum rigidity (or minimum end deflection) are conflicting to
each other. In other words, a design that is near-optimal from cost consid-
eration is not near-optimal from rigidity consideration and vice versa. This
kind of conflicting objective functions leads to Pareto-optimal solutions. In
the following, we present the mathematical formulation of the two-objective
optimization problem of minimizing cost and the end deflection [15, 8]:

Minimize fi(#) = 1.10471h%¢ + 0.04811¢b(14.0 + £),
Minimize f2(%) = §(%),

Subject to g1 (%) = 13,600 — (&) > 0, (1.7)
g2(%) = 30,000 — o(Z) > 0, '
gg(f)Eb—hZO,
g4(%) = P.(%) — 6,000 > 0.

The deflection term (&) is given as follows:

2.1952

@ =

There are four constraints. The first constraint makes sure that the shear
stress developed at the support location of the beam is smaller than the al-
lowable shear strength of the material (13,600 psi). The second constraint
makes sure that normal stress developed at the support location of the beam
is smaller than the allowable yield strength of the material (30,000 psi). The
third constraint makes sure that thickness of the beam is not smaller than the
weld thickness from a practical standpoint. The fourth constraint makes sure
that the allowable buckling load (along ¢ direction) of the beam is more than
the applied load F'. A violation of any of the above four constraints will make
the design unacceptable. The stress and buckling terms are given as follows

[34]:

7@ = )2+ ()2 () VOB + (b D),



XX EVOLUTIONARY MULTI-CRITERION OPTIMIZATION

, 6,000
T = m,
o 6,000(14 + 0.5£)\/0.25(£2+ (h+1)?)
2{0.707he(£2/12+ 0.25(h +t)2)}
504,000
o(Z) T2y
P.(¥) = 64,746.022(1— 0.0282346t)tb3.

The variables are initialized in the following range: 0.125 < h,b < 5.0 and
0.1 < /4,1 <10.0. Constraints are handled using the bracket-operator penalty
function [9]. Penalty parameters of 100 and 0.1 are used for the first and
second objective functions, respectively. We use real-parameter GAs with
simulated binary crossover (SBX) operator [10] to solve this problem. Unlike
in the binary-coded GAs, variables are used directly and a crossover operator
that creates two real-valued children solutions from two parent solutions is
used. For details of this crossover implementation, refer to original studies
[10, 15, 13]. In order to investigate the search space, we plot about 230,000
random feasible solutions in fi-f> space in Figure 1.16. The figure clearly
shows the Pareto-optimal front near the origin. It can be seen that the Pareto-
optimal solutions have a maximum end deflection value of around 0.01 inch,
beyond which the an increase in end deflection also causes an increase in
cost. It is also interesting to observe that a large density of solutions lie near
the Pareto-optimal region, rather than away from it. An initial population
of 100 solutions are shown in the figure. We use a ognare of 0.281 (refer to
equation 1.3 with P = 4 and ¢ = 10). Figure 1.17 shows the populations at
different generations. The figure clearly shows that NSGA progresses towards
the Pareto-optimal front with generation. Finally, Figure 1.18 shows that
the population after 500 generations has truly come near the Pareto-optimal
front. Note here that the deflection axis is now plotted for a reduced range
compared to that in Figure 1.16. These figures demonstrate the efficacy of
NSGAs in converging close to the Pareto-optimal front with a wide variety of
solutions.

Before we end the discussion on this problem, we would like to highlight
an important by-product of multi-criterion optimization. If we investigate the
two extreme solutions (the smallest cost solution and the smallest deflection
solution), we observe an interesting property among the two solutions (Ta-
ble 1.1). Tt is remarkable to note that both optimal solutions have identical
values for three of four variables (h, £, and ¢). The only way the solutions differ
is in variable b. As long as the first three variables are set to the above values,
any value of b (within lower and upper limits satisfying all constraints) would
produce a Pareto-optimal or a near-Pareto-optimal solution. For a smaller
value of b, the resulting design is a closer to a smaller cost design. This infor-
mation is crisp and very useful for designers and is not apparent how else such
an information could be found. It is not clear whether such a property exists
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solutions are found.

in Pareto-optimal solutions of other multi-criterion optimal design problems,
but if there exists such a property, it is obvious that any designer would like
to know it at any cost. Evolutionary approaches to multi-criterion optimiza-
tion problems allow such a study to be carried out in other engineering design
problems as well.
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Table 1.1 Two extreme Pareto-optimal solutions are shown.

Cost  Defl. h Y4 t b

3.944 0.005 0.422 2465 9.990 0.439
20.677 0.001 0.422 2465 9.990 2.558

1.7 FUTURE DIRECTIONS FOR RESEARCH

As mentioned earlier, evolutionary multi-criterion optimization techniques are
getting growing interests among researchers and practitioners. As the interests
grow, there also exists a need of a directed research and application. In the
following, we describe some of the immediate research directions that may
help develop better algorithms for multi-criterion optimization.

1. Develop constrained test problems for multi-objective optimization
2. Comparison of existing multi-objective GA implementations
3. Understand dynamics of GA populations with generations
4. Scalability of multi-objective GAs with number of objectives
5. Convergence to Pareto-optimal front
6. Define appropriate multi-objective GA parameters (such as elitism)
7. Metrics for comparing two populations
8. Hybrid multi-objective GAs
9. Real-world applications
10. Multi-objective scheduling and other optimization problems

Because of page restrictions, we only discuss here the first issue by presenting
a number of test problems. Interested readers may refer to [7] for details on
other issues.

With the development of multi-objective optimization algorithms, there is
an obvious need of a good set of test problems, which will test and compare
different multi-criterion optimization algorithms with each other. Many test
problems that are used in the literature are listed in [42]. However, it is not
clear what aspect of an algorithm is tested by these test problems. Recently, a
systematic procedure of constructing test problems have been suggested [7]. In
that study, test problems are constructed from single-objective optimization
problems to test two main features a multi-criterion optimization technique
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must have: (i) convergence ability to the true Pareto-optimal front and (ii)
ability to find diverse Pareto-optimal solutions. To test these two features,
three different functions (g, fi, and h) are used to construct a two-objective
optimization problem:

Minimize f1 (%) = fi(z1,22,...,2m),
Minimize f2(%) = 9(®m+1, -, en)h(f1(z1, -, 2m), 9(Zmt1, - - -, ZN)).
(1.8)
Since there are no variables which are common to both functions ¢ and fi,
the Pareto-optimal solutions take those values of z,,41 to n variables which
correspond to the global optimum of g. Since the function f; is also to be
minimized, Pareto-optimal solutions take all possible values of xz; to z,, vari-
ables. The above construction procedure allows the function g to control the
search space lateral to the Pareto-optimal front. Thus, just by choosing a
multi-modal or a deceptive g function [12], a multi-modal or deceptive two-
objective optimization problem can be constructed. The function f; controls
the search space along the Pareto-optimal front. Thus, a non-linear function
of fi can construct a two-objective optimization problem having bias against
some regions in the Pareto-optimal region. Finally, the function A controls
the shape of the Pareto-optimal front. By choosing a convex, concave, or
periodic function for h, a two-objective optimization problem having convex,
concave, or discontinuous Pareto-optimal region can be constructed. In this
study, we have already shown one such function (problem F3) which has a
discontinuous Pareto-optimal region. This construction method allows each
of two important features of a multi-criterion optimization algorithm to be
tested in a controlled manner. In the following, we present a few test problems
which can be used to test multi-criterion optimization algorithms.

Multi-modal multi-objective problem: Construct the problem in equa-
tion 1.8 using following functions:

f1(€E1) = T,
N
g(za,...,xN) = 1+10(N—1)—1—233?—10008(271’1‘2-),
i=2
0.5
_ (L i
h(flag) — 1 (g) ) lff1§g7
0, otherwise.

The first variable lies in 21 € [0, 1] and all others in [—30, 30]. Global
Pareto-optimal solutions are as follows: 0 < z; < 1 and z; = 0.0 for
it =2,...,N. AN = 10 or more is recommended. Multi-criterion
optimization face difficulty with this problem because of the existence
of (61N¥=1 — 1) other local Pareto-optimal solutions each corresponding
to an integer value of x5 to zy variables.
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Deceptive multi-objective problem: The function is defined in unitation®
u of N substrings of different lengths ¢; (i =1,..., N):

i = 14u(th),
g, = Zimao(u(t)
1+u(£1) ’

The global Pareto-optimal front has the following solutions: 0 <
u(fy) < £y and u(f;) = ¢ for all other i = 2,..., N. Note that this
function is defined in gene the space. This problem is deceptive because
the subfunction g(u(¢;)) shows that the function values of unitation
u = 0 to (¢4 — 1) directs the search towards the deceptive attractor
u = 0, whereas the solution u = #; is the true minimum of subfunction

qg.

where g(u(4;)) =

Biased Pareto-optimal front: Construct the problem using equation 1.8
and following functions:

fi(z1) = 1 —exp(—4a1) sin6(57r:t:1),
N N min v
5 Lf — 5 XL
g(l‘z, B 'EN) = gmin t+ (gmax - gmin) XJ:VZ_z - ZZ_J\% : X
P — R 2
22_2 ;nax 22_2 inm

h(f1,9)

{1—(%)2, i f <,

0, otherwise.

Use v = 0.25, gmin = 1, and gmax = 10. All variables vary in [0, 1], thus
M = 0 and £"* = 1. The true Pareto-optimal front has following
values of variables: 0 < 2, < 1 and z; = ™" = 0 fori = 2,...,N.
Multi-criterion optimization problems may face difficulty in this problem
because of the non-linearity in f; function. There are two aspects of
this problem: (i) There are more solutions having f; close to one than
solutions having f close to zero, and (ii) there will be a tendency for
algorithms to find z; values within [0,0.2] than the other space (z; €
[0.2,1]), although all solutions z; € [0, 1] are Pareto-optimal solutions.
Thus, this problem tests an algorithm’s ability to spread solutions over
the entire Pareto-optimal region, although the problem introduces a bias
against certain portion of the search space.

3Unitation is the number of 1s in the substring.
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Concave Pareto-optimal front: Equation 1.8 with following functions can
be used to construct this problem:

f1($1) = I,
g(za,...;zn) = 1410 Z]:\T—l’
hfig) = { ( ) if fi <g,
otherwise.

All variables lie in [0,1]. The true Pareto-optimal front has following

variable values: 0 < z; < 1 and 2; = 0 for 1 = 2,..., N. By setting
a = 0.5, we obtain a problem having convex Pareto-optimal front (like in
Figure 1.2) and by setting & = 2, we shall obtain a problem having non-
convex Pareto-optimal front (line in Figure 1.3). Thus, multi-objective
algorithms can be tested for the effect of non-convexity in the Pareto-
optimal front just by changing the a parameter.

Discontinuous Pareto-optimal front: We construct the problem using equa-
tion 1.8 and the following functions:

f1(I1) = T,
N
_(](Iz,...,l‘N) = 1—}-1027?7
0.25
h(fi,9) = 1- (%) - %Sin(l()ﬂ'fl).

All variables vary in [0, 1] and true Pareto-optimal solutions are con-

stituted with z; = 0 for 7z = 2,..., N and discontinuous values of z;
in the range [0,1]. This problem tests an algorithm’s ability to find
Pareto-optimal solutions which are discontinuously spread in the search
space.

More complex test problems can be created by combining more than one
aspects described above. Difficulties can also be increased by introducing pa-
rameter interactions by first rotating the variables by a transformation matrix
and then using above equations. For more details, refer to the original study
[7].

In Table 1.2, we outline some of the engineering design problems where
an evolutionary multi-criterion optimization algorithm has been successfully
applied.
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Table 1.2 Applications of evolutionary multi-criterion optimization algo-

rithms.

Researcher(s) | Year | Application area

P. Hajela and C.-Y. Lin 1992 | Multi-criterion structure design [23]

J. W. Eheart, S. E. Cieni- | 1993 | Ground-water quality monitoring

awski and S. Ranjithan system [16]

C. M. Fonseca and P. J. | 1993 | Gas turbine engine design [17]

Fleming

A. D. Belegundu et al. 1994 | Laminated ceramic composites [1]

T. J. Stanley and T. Mudge | 1995 | Microprocessor chip design [39]

D. S. Todd and P. Sen 1997 | Containership loading design [41]

D. S. Weile, E. Michielssen, | 1996 | Broad-band microwave absorber de-

and D. E. Goldberg sign [43]

A. G. Cunha, P. Oliviera, | 1997 | Extruder screw design [4, 6]

and J. A. Covas

D. H. Loughlin and S. Ran- | 1997 | Air pollution management [27]

jithan

C. Poloni et al. 1997 | Aerodynamic shape design [33, 32]

E. Zitzler and L. Thiele 1998 | Synthesis of digital hardware-
software  multi-processor  system
[45)

G. T. Parks and 1. Miller 1998 | Pressurized water reactor reload de-
sign [31]

S. Obayashi, S. Takahashi, | 1998 | Aircraft wing planform shape design

and Y. Takeguchi [30]

K. Mitra, K. Deb, and S. K. | 1998 | Dynamic optimization of an indus-

Gupta trial nylon 6 semibatch reactor [29]

D. Cvetkovic and I. Parmee | 1998 | Airframe design [5]

1.8 SUMMARY

In this paper, we have discussed evolutionary algorithms for multi-criterion
optimization. By reviewing a couple of popular classical algorithms, 1t has
been argued that there is a need for more efficient search algorithms for multi-
criterion optimization. A number of evolutionary algorithm implementations
have been outlined and one particular implementation (called non-dominated
sorting GA (NSGA)) has been discussed in details. The efficacy of NSGA
has been demonstrated by showing simulation results on three test problems
and on one engineering design problem. The results show that evolutionary
algorithms are effective tools for doing multi-criterion optimization in that
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multiple Pareto-optimal solutions can be found in one simulation run. The
study also suggests a number of immediate future studies including suggest-
ing a few test problems for multi-criterion optimization, which should help
develop better algorithms and maintain a focused research direction for the
development of this fast growing field.
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