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Fitness Sharing and Niching Methods Revisited

Bruno Sareni and Laurent Khenlihl

Abstract—Interest in multimodal optimization function is ex- [2]. Section Il presents the main principles of fitness shar-
panding rapidly since real-world optimization problems often ing and reviews the recent development of this technique.
require the location of multiple optima in the search space. In gaction |1 is devoted to other niching schemes and especially

this context, fithess sharing has been used widely to maintain di thods. Section IV i tioat . f f
population diversity and permit the investigation of many peaks crowding methods. Section Investigates various torms o

in the feasible domain. This paper reviews various strategies of sharing on test problems defined in Section Ill and compares
sharing and proposes new recombination schemes to improve its their efficiency with the other niching GA’s. Empirical results

efficiency. Some empirical results are presented for high and a are presented for high and a limited number of fitness function
limited number of fitness function evaluations. Finally, the study evaluations

compares the sharing method with other niching techniques.

Index Terms—Evolutionary computation, fitness sharing, ge- II. EITNESS SHARING
netic algorithms, multimodal optimization, niching methods.

A. Principle

| INTRODUCTION Fitness sharing modifies the search landscape by reducing

RADITIONAL genetic algorithms (GA's) with elitist the payoff in densely populated regions. It lowers each popula-
selection are suitable for locating the optimum of unition element’s fithess by an amount nearly equal to the number
modal functions as they converge to a single solution of similar individuals in the population. Typically, the shared
the search space. Real optimization problems, however, offiénessf/ of an individuali with fitnessf; is simply
lead to multimodal domains and so require the identification £,
of multiple optima, either global or local. For this purpose, fl=2 (1)
niching methods extend simple GA'’s by promoting the forma- i
tion of stable subpopulations in the neighborhood of optimaherem; is the niche count which measures the approximate
solutions. number of individuals with whom the fithegs is shared. The
Niching methods have been developed to reduce the effaithe count is calculated by summing a sharing function over
of genetic drift resulting from the selection operator in thall members of the population

standard GA. They maintain population diversity and permit N
the GA to investigate many peaks in parallel. On the other m; = ZSh(dij) )
hand, they prevent the GA from being trapped in local optima =1

of the search space. Niching GA'’s are based on the mechani%sereN denotes the population size an represents the

of natural ecosystems. In nature, animals compete to surviy; R T
4 P stance between the individuaand the individuali. Thence,

by hunting, feeding, grazing, breeding, etc., and differe haring f . he similarity level b
species evolve to fill each role. A niche can be viewed astae sharing _unctlonsm) measures the simi a_mty evel between
population elements. It returns one if the elements are

subspace in the environment that can support different type§ P F . . o
life. A species is defined as a group of individuals with simild entical, zero if their distancé;; is higher than a threshold of

biological features capable of interbreeding among themsel 'gs?m?larity, and an intermediate value at interme(_jiatg Ieyel of
but that are unable to breed with individuals outside the ssimilarity. The most widely used sharing function is given

group. For each niche, the physical resources are finite aEt"ﬁifOIIOWS:

must be shared among the population of that niche. By sh(di;) = {1_(dij/0's)a7 if d <o, 3)
analogy, niching methods tend to achieve a natural emergence ” 0, otherwise

of niches and species in the environment (search space)v\,ﬁ\ere o
niche is commonly referred to as an optimum of the domaiaistances

. . . . cutoff or the niche radius) and is a constant
the fitness representing the resources of that niche. Species A meter which regulates the shape of the sharing function.
be defined as similar individuals in terms of similarity metrics.

. . is commonly set to one with the resulting sharing function
The sharing method is probably the best known and als; y g g

d iching techni It inally introd dggferred to as the triangular sharing function [3].
used among niching techniques. 1t was onginatly introduced by ¢ distancei;; between two individualg and j is char-

Holland [1, p. 164] and improved by Goldberg and RIChardSQJbterized by a similarity metric based on either genotypic or
Manuscript received July 25, 1997; revised March 2, 1998 and August Jihenotypic similarity. Genotypic similarity is related to bit-

denotes the threshold of dissimilarity (also the
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Sharing based on phenotypic similarity may give slightly betténe scaling function is too high, the predominance of fitness
results than sharing with genotypic similarity [4]. scaling can prevent the reduction of genetic drift by the

Sharing must be implemented with the less biased select&maring method. The domination of “super-individuals” in the
methods. Stochastic remainder selection (SRS) and stochagtipulation can cause the niching GA to converge prematurely.
universal selection (SUS) have been widely used to reduda the other hand, if the power of the scaling function is too
bias in the selection algorithm [5]. Tournament selection (T&w, differentiation between optima can be insufficient. This
with continuously updated sharing is another possibility [6]. Inan hinder a perfect detection of the optima by the sharing
the same way, sharing must use low recombination operatarsthod. The compromise in the choice of the scaling power is
to promote stability of subpopulations. In effect, crossovedirectly related to the accurate balancing between exploration
between individuals of different niches often lead to poand exploitation necessary to all global stochastic optimization
individuals (lethals). Mating restriction schemes have beanethods. To prevent premature convergence and increase the
successfully applied to reduce the formation of lethals [4gfficiency of the sharing method, annealing the scaling power
[71, [8]- during the search is recommended [19].

B Limitations Ill. FURTHER NICHING METHODS

Sharing tends to encourage search in unexplored regions ofn important variety of other niching methods have been
the space and favors the formation of stable subpopulatiorsported in the literature including sequential niching [10],
Nonetheless, sharing is not without limitations. immune systems [11], speciation with implicit fithess sharing

» Setting the dissimilarity threshold, requiresa priori and co-evolution [20], ecological GA’s [9], [12], and crowding

knowledge of how far apart the optima are. For resichemes. This paper focuses on crowding techniques and
optimization problems, however, no information abougxplores a recent promising niching method caltéhring

the search space and the distance between the optima is

generally available. On the other hang, is the same A. Crowding Methods

for all individuals. This supposes that all peaks must ¢q4ing methods insert new elements in the population
be nearly equidistant in the domain. For these reasor@ replacing similar elements
y

sharing can fail to maintain all desired peaks if the . , .
are not equidistant or if the estimated distance between Stan_dard Crowdingn De‘]ong S crov_vgllng [13], only &
fraction of the global population specified by a percentage

two peaks is incorrect. Various empirical formulas have G (generation gap) reproduces and dies each generation
been proposed to set the dissimilarity threshold but this 9t 1 gap) rep . Y :
In this crowding scheme, an offspring replaces the most

problem remains the major flaw of the method [4], [9]. similar individual (in terms of genotypic comparison)

e The sharing scheme is very expensive as a result of . .
d y eXp taken from a randomly drawn subpopulation of size CF

the computation of niche counts of complexity(N?) ) .
per generation. Clustering analysis and dynamic niching (crowding factor) from the global populatlo_n._ Because_of
a great number of replacement errors, the initial crowding

have been developed to reduce computational complex- o ) )
ity and increase sharing effectiveness [7], [8]. In many of DgJong ha; bgen shown to be limited in multimodal
function optimization [4], [9].

domains, however, the computational time to obtain the. Deterministic Crowdina Mahfoud improved standard
fithess of individuals dominates the computational cost of cr((a)v(\e/din Sb ¢ intrzducir? c?)moititionpb(;tv?/eer? aclzhilgren
comparisons. In that case, standard sharing can be imple- g by Inti cing comp

and parents of identical niches [9]. After crossover and

mented with only a small increase in the computational ) )
requirements. favgntually mL.JtatIOI’],. each child replaces t.h(.a r_nearest pgrent
if it has a higher fitness. Thus deterministic crowding
(DC) results in two sets of tournaments: (parent 1 against
child 1, and parent 2 against child 2) or (parent 1
One way to improve sharing efficiency is to use fitness against child 2, and parent 2 against child 1). The set
scaling [3]. A scaled shared function increases differentiation of tournament that yields the closest competitions is
between optima and reduces deceptifi6], [19]. It makes held. Similarity is computed using preferably phenotypic
the optima more attractive than the surrounding regions of the distance. With two distance comparisons per set of
space. A common technique to scale the fitness function is tournaments andv/2 sets of tournaments per generation,
to use a power scaling. In that case (1) can be modified as the resulting order of complexity of deterministic

C. Fitness Scaling

follows: crowding is O(N).
£ » Restricted Tournament SelectioRestricted tournament
= m—z 4) selection (RTS) adapts standard tournament selection (TS)

for multimodal optimization [14]. RTS initially selects
The remaining problem is the choice of an appropriate two elements from the population to undergo crossover
parameter3 for a given objective function. If the power of and mutation. After recombination, a random sample

of CF individuals is taken from the population as in
IWe talk about deception when the combination of good building blocks Pop

leads to reduced fitness rather than increased fitness. Deceptive problems are standard CrOWd'ng' Each OﬁSp.”ng compgtes W'th. the
generally multimodal functions with attractive local optima (see [16]). closest sample element. The winners are inserted in the
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population. This procedure is repeatdy2 times. The 1
order of complexity of RTS iD(CF - N). It can vary

from O(N) to O(N?) according to the crowding factor 08}
value CF.
0.6 |-
B. Clearing 309
04}

The clearing method is very similar to fithess sharing but is
based on the concept of limited resources of the environment |
[15]. Instead of sharing the resources between all individuals of
a single subpopulation as in fitness sharing, clearing attributes . . .
them only to the best members of the subpopulation. In 0 0.2 04 06 0.8 1
practice, the capacity: of a niche specifies the maximum
number of elements that this niche can accept. Thus, clearff
preserves the fitness of the best individuals (dominant
individuals) of the niche and resets the fithess of the others that !
belong to the same subpopulation (dominated individuals). As
in the sharing method, individuals belong to the same niche (or 08
subpopulation) if their distance in the search space is less than J
a dissimilarity thresholdr, (clearing radius). Clearing can be 06F
coupled with elitism strategies to preserve the best elements’tf
the niches during the generations. The order of complexity of
the basic clearing procedure 6% ¢/N) wheregq is the number

of niches maintained during the search. 021 /\
O L L i

IV. TEST PROBLEMS 0 02 04, 06 08 :

1. FunctionF'3.

04l i

Fig. 2. FunctionF'4.
A. Test Functions

We consider three multimodal functions of different diffi- 1.0
culty with nomenclature maintained from [9]
0.8
F3(z) = sin® (57r[x3/4 - 0.05]). (5)
0.6
This function defined on [0, 1] consists of five unequally u(x)
spaced peaks of uniform height. Maxima are located at ap- 0.4
proximatez values of 0.080, 0.247, 0.451, 0.681, and 0.934.
All peaks are of height 1.0 o2
Fa(z) = ¢ ¥ 2w )’ sin® (57r[a:3/4 - 0.05]). (6) 0.0
. , . i 0 2 4 6
F4 is also defined on [0, 1] and consists of five unequally X

spaced peaks of nonuniform height. Maxima are located . 3. The bimodal deceptive subfunction usedzin.
approximater values of 0.080, 0.247, 0.451, 0.681, and 0.934.
Maxima are of approximate height 1.000, 0.948, 0.770, 0.5@3 performance Criteria

and 0.250 respectively. . . . .
F7 is the massively multimodal deceptive function [15], Maximum Peak Ratio:The maximum peak ratio is the sum

[16]. F'7 is defined by the sum of the fitness of five subfuncc—nc thg fitnes.s.of the local optima identified by the niching
tions technique divided by the sum of the fitness of the actual
optima in the search space [8]. An optimum is considered to be

4 5 detected if it is within a niche radius of the real optimum and

F7(zg,21,...,T29) = Z” Zxﬁiﬂ (7) ifits fitness value is at least 80% of the real optimum. When

j=0 an optimum is not identified, the local optimum value is set

to zero. Thence, the maximum value for the maximum peak
wherevk € [0,29], 2 € {0, 1}. Each subfunction is a bimodalratio is one corresponding to a perfect detection of all optima.
deceptive function of unitation as displayed in Fig /& has  Effective Number of Peaks Maintainedlve also consider

32 global optima of height 5 and several million local maximthe effective number of optima maintained at the end of the
lying between 3.203 and 4.641. search according to the previous assumptions.

=0
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TABLE |
SELECTION IN THE SHARING METHOD. THIS TABLE PRESENTS THEVALUES OF THE PERFORMANCE CRITERIA (SEE SECTION IV) ON FUNCTION F'3 FOR EACH
SELECTION SCHEME. TESTL |s PERFORMED USING 100 INDIVIDUALS AND 200 GENERATIONS TEST2 Is PERFORMED USING 30 INDIVIDUALS AND 30 GENERATIONS

Selection Nb of Peaks Maximum Peaks Mean End
Scheme maintained Ratio Chi-Square Chi-Square
testl test2 testl test2 testl test2 testl test2
SRS 5 3.6 0.998 0.703 2.615 4.352 2.283 4.255
SuUsS 5 4.8 0.997 0.935 2214 2.957 1.672 1.789
TS 5 3.2 0.998 0.678 4.575 5.043 5.076 5.042
TABLE I

SELECTION IN THE SHARING METHOD. THIS TABLE PRESENTS THEVALUES OF THE PERFORMANCE CRITERIA (SEE SECTION 1V) ON FUNCTION F'4 FOR EACH
SELECTION SCHEME. TESTL Is PERFORMED USING 100 INDIVIDUALS AND 200 GENERATIONS. TEST2 Is PERFORMEDUSING 30 INDIVIDUALS AND 30 GENERATIONS

Sclection Nb of Peaks Maximum Peaks Mean End
Scheme maintained Ratio Chi-Square Chi-Square
testl] test2 testl test2 test] test2 test] test2
SRS 5 3.2 0.996 0.628 2.552 4.957 2.514 4.617
SuUS 5 4.8 0.999 0.94]1 2.395 3.461 2.109 2.281
TS 5 3.2 0.987 0.678 5.145 5.114 6.220 4.627
20 20
18 18
S16 1 ——Sus §16 3 —Sus
= — 8
-%14 :SRS §14 3 e SRS
e L e
° 12 » g1
510 310
I o
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Fig. 4. Chi-square-like deviation of the selection schemes investigated Biy. 5. Chi-square-like deviation of the selection schemes investigated on
function F'3. The population size isV = 100. function F'4. The population size isV = 100.

Chi-Square-Like Performance CriteriaThe *“chi-square- for the nonpeak nicheV denotes the population size, aifid
like” performance statistic measures the deviation between d@responds to the fitness value of the pgakhe variableX;
population distribution and an ideal proportionally populateggpresents the observed number of individuals in a niche
distribution [4], [7], [8]. This criterion is computed using therepresents the expected ideal number, andepresents the
actual distribution of individualsY; and an ideal distribution standard deviation of the number of individuals in the ideal
meany; in all the ¢ niches § peak niches plus the nonpealdistribution.
niche) The chi-square-like performance statistic characterizes the
ability of the niching technique to proportionally populate the
ol <Xi — M)Q (8) niches of the search space. The smaller the measure, the better

chi-square-like deviatior- Z the method

Number of Fitness Function Evaluation$n many applica-

where tions such as electromagnetic design, the computational cost
fi of fitness functions can be very expensive. Therefore, we are
ST and o; = (1 — pi/N) (9) interested in evaluating the efficiency of niching methods at
- limited numbers of function evaluations. Experimental results
for the « peak niches and were established for 900 fitness function evaluations (30
q individuals, 30 generations denoted by test2 in the following).

ter1 =0 and o441 = Zaf (10) Simulations were also carried out with a higher number of

i=1 fithess function evaluations 200 000 (100 individuals, 200

i =N
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Fig. 6. Chi-square-like deviation of the selection schemes investigated i§- 8- Chi-square-like deviation of the crossover schemes investigated on

function F'3. The population size isV = 30. function F'3. The population size iV = 100.
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Fig. 9. Chi-square-like deviation of the crossover schemes investigated on

Fig. 7. Chi-square-like deviation of the selection schemes investigated ©fction F'4. The population size isv = 100.
function F4. The population size isv = 30.

For illustration, ten runs were made with different popula-
generations denoted by testl in the following) for comparisaions generated at random for each scheme to take into account
with other experimental studies. These values were considetkd stochastic nature of GA’s. An average is calculated for the
reasonable, and no claim is made to their optimality. performance criteria.

V. EXPERIMENTAL STUDY A. Sharing Experiments

All experiments were performed with a genotype coded in a Selection in the Sharing MethodiVe investigate the effect
30-bit number using Gray parameter encoding. Mutation ratekthe selection scheme on the sharing efficiency. The different
and crossover probabilities were chosen according to earlsehemes reviewed in the first section, namely SUS, SRS and
recommendations [8], [9]. TS, with continuously updated sharing, are compared. The

The mutation was removed for functiod® and I'4 to pre- crossover operator is the standard one point crossover with
vent the restoration of lost diversity. Recall that the main roferobability p. = 1, the mutation probability being set to zero.
of mutation is to protect individuals from the loss of geneti®he parametekx is set to one and a value of 0.1 is taken
material by always maintaining diversity in the populatiorfor the niche radius. Tables | and Il summarize statistics on
If we want to assess the efficiency of the niching schemeasgrformance criteria for the functiords3 and F'4 respectively.
it is necessary to isolate the different population diversity Typical chi-square-like deviations on function83 and
mechanisms by resetting the mutation rate. F4 are displayed in Figs. 4-7 for the selection schemes

Since RTS and DC use implicitly a full crossover probabilinvestigated.
ity, p. = 1 was set in all other niching methods. Moreover, Results show the superiority of SUS regardless of the
this allows to evaluate the niching GA'’s performance in thgopulation size and the number of fitness function evaluations.
most disruptive case. TS and SRS fail to maintain all peaks at low number of
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TABLE 1l
RECOMBINATION IN THE SHARING METHOD. THIS TABLE PRESENTS THEV ALUES OF THE PERFORMANCECRITERIA (SEE SECTION IV) ON FUNCTION F'3 FOR EACH
RECOMBINATION SCHEME. TESTL Is PERFORMEDUSING 100 INDIVIDUALS AND 200 GENERATIONS. TEST2 Is PERFORMEDUSING 30 INDIVIDUALS AND 30 GENERATIONS

Crossover Nb of Peaks Maximum Peaks Mean End
Scheme maintained Ratio Chi-Square Chi-Square
test] test2 testl test2 test! test2 test] test2
one-point S 4.8 0.997 0.935 2.214 2.957 1.672 1.789
uniform 0.5 38 3.6 0.757 0.696 8.926 5.865 8.145 5.547
uniform 0.1 5 42 0.995 0.830 4.307 4.020 3717 3.660
uniform 0.01 5 4.6 0.999 0.889 1.479 3422 1.041 2.120
match. sort + 5 4.8 0.999 0.947 1.287 2.839 0.740 1.972
uniform 0.5
TABLE IV

RECOMBINATION IN THE SHARING METHOD. THIS TABLE PRESENTS THEV ALUES OF THE PERFORMANCE CRITERIA (SEE SECTION V) ON FUNCTION F'4 FOR EACH
RECOMBINATION SCHEME. TESTL Is PERFORMED USING 100 INDIVIDUALS AND 200 GENERATIONS. TEST2 IS PERFORMED USING 30 INDIVIDUALS AND 30 GENERATIONS

Selection Nb of Peaks Maximum Peaks Mean End
Scheme maintained Ratio Chi-Square Chi-Square
testl test2 test1 test2 test1 test2 testl test2
one-point 5 4.8 0.999 0.941 2.395 3464 2.109 2.281
uniform 0.5 42 3.2 0.767 0.670 10.58 6.377 9.613 5415
uniform 0.1 5 3.8 0.994 0.798 5.144 5.080 4474 3.883
uniform 0.01 5 44 0.999 0.838 1.355 2.998 1.130 2.335
match. sort + 4.8 44 0.984 0.920 2.041 2.712 1.380 1.826
uniform 0.5
20 20
18 18
....... uniform 0.01 - - - ----uniform 0.01
S 16 . S16 | .
= uniform 0.1 = - uniform 0.1
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Fig. 10. Chi-square-like deviation of the crossover schemes investigatedfég. 11. Chi-square-like deviation of the crossover schemes investigated on
function F3. The population size isV = 30. function F'4. The population size isV = 30.

fitness function evaluations. In particular, TS was unable 1) sort the population in decreasing fitness orderiSet.
to form stable subpopulations yielding to a chi-square-like 2) Loop untili = N — 2

deviation with high fluctuations during the generations. These  fing theth element (among = i+1- - - NV individuals)
results are in accordance with Baker's predictions since the  that js closest to théth element of the population.
SUS is described as the less biased proportional selection

technique with minimum spread [5]. As could be expected, dir, = ,,_712111_1"]\, dij

it yields a minimum genetic drift and allows the population to =

proportionally populate the niches with more accuracy. exchange the + 1th element with theith element.
Recombination in the Sharing Methodss already men- increase: (i = ¢+ 1).

tioned in Section I, recombination in the sharing method After the selection of parents, the matching sort is applied

should prevent the formation of lethals. The first solution tand individuals are crossed pairwise following the order of

achieve this is to use restrictive mating techniques. In thise sort. Note that this scheme is rather costly since it realizes
paper, we propose to sort the population before applyidg(/N — 1)/2 — 1 distance comparisons per generation.

the crossover and mutation operators. A pseudocode of ouiThe second way to reduce the formation of lethals is to limit

matching sort algorithm is described as follows. the disruption rate of schemata. This can be achieved by using
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TABLE V
NICHING METHODS COMPARED. THIS TABLE PRESENTS THEVALUES OF THE PERFORMANCE CRITERIA (SEE SECTION IV) oN FuncTioN '3 FOR EACH NICHING GA.
TesTl Is PERFORMED USING 100 INDIVIDUALS AND 200 GENERATIONS TEST2 IS PERFORMED USING 30 INDIVIDUALS AND 30 GENERATIONS

Niching Nb of Peaks Maximum Peaks Mean End
GA maintained Ratio Chi-Squarc Chi-Squarc
test] test2 testl test2 testl test2 test1 test2
sharing+sort 5 4.8 0.999 0.947 1.287 2.839 0.740 1.972
clearing 5 5 1.000 0.990 0.293 1.045 0212 0.129
Deterministic 5 5 1.000 0.999 5.683 3.537 5.820 3.155
Crowding
RTS (CF=30%N) 5 4.8 1.000 0.958 2.839 2.743 2.520 3.763
TABLE VI

NICHING METHODS COMPARED. THIS TABLE PRESENTS THEVALUES OF THE PERFORMANCE CRITERIA (SEE SECTION V) ON FUNCTION F'3 FOR EACH NICHING GA.
TesTL Is PERFORMED USING 100 INDIVIDUALS AND 200 GENERATIONS TEST2 Is PERFORMED USING 30 INDIVIDUALS AND 30 GENERATIONS

Niching Nb of Peaks Maximum Pecaks Mean End
GA maintained Ratio Chi-Square Chi-Square
testl test2 test] test2 test] test2 testl test2
sharing+sort 4.8 44 0.984 0.920 2.041 2.712 1.380 1.826
clearing 5 4.8 1.000 0.933 1.448 2.397 1.354 1.477
Deterministic 4 4 0.778 0.768 9.582 5.263 10.83 5.264
Crowding

RTS (CF=30%N) 5 5 1.000 0.998 6.516 3.698 6.279 2.924

low recombination operators such as uniform parameterized\iching Methods ComparediWe compare the efficiency of
crossover [17], [18]. Standard uniform crossover swaps tvitness sharing coupled with the matching sort algorithm with
parents’ alleles with a probability of 0.5. Under unifornthe other niching GA's reported in Section Ill. RTS and DC
parameterized crossover, an additional paramg&edefines are implemented with standard uniform crossover. An optimal
the probability of swapping. This operator combines a higtrowding factor for RTS has been determined empirically for
recombination potential and a good exploration power withtge functions¥3 and F4. We useCF = 30%N, where N is
low level of disruption [18]. o the population size. This leads @F = 30 for the testl and

‘We compare the efficiency of these recombination schemep — g for the test2. Clearing is combined with SUS and an
with ;tandard uniform crossover and one-point Crossov@litist strategy as recommended by Petrowski [15]. In each
Experiments are made on functioA8 and /"4 with SUS and  generation, the dominant individual of each subpopulation
no mute}tlor_]. The crossover probabﬂme; are set to one in ea&ﬂnpetes with the corresponding one of the previous genera-
recombination schemes. The parametes set to one, and a yjon The winners of the resulting tournaments are conserved
value of 0.1 is taken for the niche radius. Tables Il and Y, yhe cyrrent population. Following this procedure, the best
summarize statistics on performance criteria for the funCt'Oﬂisdividual of each niche is always preserved during the search
3 aqd 4 r'especuve'ly. L . The capacity of the niches is set to ten for testl and two for

Typical chi-square-like deviations on functiof® and £'4 . o , .

. S o test2, respectively. All niching GA’s are performed with full

are displayed in Figs. 8-11 for the recombination schemes - .
investigated. crgssover probabilityp. = 1) and ng mutation. The paramete_r

Results show a slight superiority of our matching sort alg « is set to one, and a value of 0.1 is taken for the niche radius.

rithm regardless of the number of fitness function evaluatio(t"’.1b|es v ant_j VI summarize statlstlt_:s on performance criteria
r the functionsF'3 and F'4 respectively.

Uniform parameterized crossover with a very low switchin ical chi like deviati f . d
probability works well for the testl but is less efficient Typical chi-square-like deviations on functiohss and I4

when the number of fitness function evaluations is reduc8 displayedin Figs. 12-15 for the niching GA's investigated.
(test2). This reveals its difficulty in exploring the entire search 1he efficiency of the niching GA is related to its capacity
space by producing individuals in different niches when tH@ find new niches by producing new individuals without
number of fitness functions is limited. In that case, standaféfcarding the niches already identified. Clearing was the
one-point crossover is better. Nonetheless, this recombinatR#st niching GA that realizes this compromise. It produces
operator is obviously more disruptive than uniform paramé- great quantity of new individuals by randomly recombining
trized crossover with low probability of swapping (see test1§lements of different niches and controls this production (and
Moreover, note that it gives poor results when the size of tigviously the genetic drift caused by selection) by resetting the
chromosome is reduced; recall that the disruption rate of tfitness of poor individuals in each different niche. Furthermore,
schemata under one-point crossovet i where! is the size the elitist strategy prevents the rejection of the best individual
of the chromosome. Standard uniform crossover was unabfeeach niche from the population. For these reasons, clearing
to form stable subpopulations because of a massive disrupt&npasses all other niching GA’s and combines a very low
rate of solutions detected. chi-square-like deviation with a good detection of the peaks.
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Fig. 12. Chi-square-like deviation of the niching GA’s investigated ofrig. 14. Chi-square-like deviation of the niching GA’s investigated on
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function 74. The population size isV = 100. Fig. 15. Chi-square-like deviation of the niching GA's investigated on

function F'4. The population size isV = 30.

Crowding schemes were unable to maintain low chi-square-
like deviations during generations. The first reason for this Let us examine now the efficiency of these niching GA’s on
is mentioned in [8]. Crowding schemes use a replacemdhe massively multimodal functio#'7. Goldberg [6] solved
strategy which minimizes the changes in the populatiothis problem with the sharing method by raising the shared
The distribution of the population in the different nicheditness to a power of 15 and using a huge population of
strongly depends on the initial distribution. This explain§000. Mahfoud [9] reported that more than 20 individuals
the higher chi-square-like deviations noted for RTS and Dger niche are necessary for DC to find the global optima.
in comparison with those corresponding to the sharing afgich parameters are inconceivable for applications with high
clearing methods which directly use a proportional selectiopomputational time of the objective function such as finite
Second, replacement errors can occur for individuals locate@ment applications. Recall that we are interested in assessing
at the edge of the niches. This explains poor results noted fbe efficiency of the niching GA’'s at a limited number of
DC when it is applied t&"4. DC detects the five peaks of thisfunction evaluations. Therefore, we prefer solving this problem
function in the first generations. Nevertheless, in the followingith the testl (100 individuals, 200 generations). For each
generations, it appears that individuals located on the thi@A, we use the Hamming distance as a similarity metric and
peak (of coordinater = 0.451) progressively migrate to the a crossover probability of 1.0. Considering the difficulty of
next peak (the fourth peak of coordinate= 0.681) because this function, the mutation rate is not removed but set to the
of replacement errors. At the two-hundredth generation, #dw value of 0.001 to increase exploration rate. The distance
individuals are discarded from the third peak yielding hetween two individuals is normalized by the biggest distance
poor chi-square distribution. RTS is less sensitive to thesalue in the search space according to [15] and [16]. The
errors with the size of the crowding factor CF used in theiche radius is set to 0.2 in the clearing and the sharing
experiments. Therefore, it surpasses DC in all cases. Shanngthods. Both of these methods are implemented with SUS.
works well on these easy problems. We compare their efficiency with and without scaling. Two
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TABLE VII
NICHING METHODS COMPARED. THIS TABLE PRESENTS THENUMBER OF PEAKS MAINTAINED DURING THE
SEARCH FOR THE FUNCTION F'7. ALL TESTS ARE PERFORMED WITH 100 INDIVIDUALS AND 200 GENERATIONS

. Nb of Peaks Confidence Margin

Niching GA maintained (95%) £
RTS (CF=5) 1.63 +0.21
RTS (CF =10) 2.28 +0.23
RTS (CF =20) 1.64 +0.25
RTS (CF = 50) 0.56 +0.14
DC 0.43 +0.13
Standard sharing 0.00 +0.00
Standard sharing + fixed scaling (f=15) 1.48 +0.17
Standard sharing + dynamic scaling 3.13 +0.32
clearing (k=2) 14.10 +1.59
clearing (k=2) + fixed scaling (f=15) 15.58 +1.66
clearing (k=2) + dynamic scaling 14.06 +1.72

forms of scaling are investigated. The first one uses a fixedch as selection, recombination, restrictive mating, and fithess
power of value3 = 15 similarly to [6]. The second increasesscaling. A simple analysis led us to class niching GA’s in
the scaling during the generatioryyflamic scaliny A value two different groups. The first one involves GA’s which are
of 4 = 1 is taken for the first fiftieth generations and is linearlgharacterized by an explicit neighborhood since they need an
increased to 15 in the following generations. explicit niche radius (clearing and sharing). This can be an

Table VII shows the effective number of peaks maintaindchportant drawback for problems for which distance between
after 200 generations for each niching GA. One hundred ruagtima cannot be estimated. The second consists of techniques
are made with different initial population generated at randofar which neighborhood is implicit (crowding schemes). In that
and an average over these runs is taken for the numbercabe, the algorithm requires no information about the search
peaks maintained at the two-hundredth generation. space and can be easily applied to various problems without

For this problem, no niching GA was able to maintaimestrictions.
the 32 global maxima. Nonetheless, clearing was obviouslyAmong all niching GA’s reviewed in this paper, clearing
better than any other technique by finding and preserviegn be considered as the best method provided that the
between 14 and 15 optima. In agreement with [16], we fimiche radius and the niche capacity are correctly estimated.
that sharing without a scaled function fails to detect any glob&haring works well on easy problems with some precautions.
solution. Raising the fitness to a power of 15 magnifies tli@ne should use stochastic universal selection and mating
differences between the global and local optima. This makesstriction schemes or low recombination operators to maintain
it easier for the sharing method to find the global optimatable subpopulations and avoid disruption of peaks detected.
Nonetheless, using such a power for scaling the shared fitnBlemetheless, sharing fails on hard problems reflecting its
discards many individuals from the population and reducédsdfficulty to differentiate the global from the local optima in
genotypic diversity. This explains the better results obtain@dultimodal deceptive landscapes through the constant modi-
for sharing with a dynamic scaled function, which allows morfcation of the fitness during generations. Therefore, sharing
diversity in the population at the beginning of the searclften requires a scaled fithess to increase peaks differentia-
Unlike the sharing method combined with a scaled functiotipn with a risk of premature convergence. This scaling is
the basic clearing procedure does not reject a great numhet necessary for crowding schemes since they are based
of promising solutions. It only discards individuals locatedn tournament rules. Restricted tournament selection gives
in the neighborhood of one dominant of a subpopulation astightly better results than deterministic crowding which has
preserves good configurations. Moreover, clearing does mifficulties to preserve the niches in some cases as a result
require a scaled function to find one global solution. On thaf replacement errors.
contrary, a dynamic scaled function seems to be somewhafhe application of new recombination operators in mul-
misleading for the clearing algorithm and in particular fotimodal landscapes such as the matching sort algorithm or
dominant individuals of different generation who competeniform parameterized crossover seems to be a promising
through our elitism scheme. way to ensure the stability of the niches. Finally, we also

RTS surpasses DC for all studied cases. The efficiency mention the necessity of investigating clustering techniques
RTS, however, strongly depends on the value of the crowdiagd adaptive niche radius methods to cleverly set the similarity
factor. This can be a significant flaw because the optimidreshold of niching GA’s with explicit neighborhood.
value for this parameter is generally unknown for a given
objective function.
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