Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
A
antifragility
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Ana Pamela Osuna Vargas
antifragility
Commits
ed4a4a69
Commit
ed4a4a69
authored
Dec 10, 2019
by
Pamela Osuna
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
pr curve
parent
474d9b4f
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
34 additions
and
0 deletions
+34
-0
prec_recall.py
+34
-0
No files found.
prec_recall.py
0 → 100644
View file @
ed4a4a69
########### PRECISION - RECALL CURVE ##########
from
sklearn.metrics
import
average_precision_score
from
sklearn.metrics
import
precision_recall_curve
def
pr
(
num_classes
,
y_test
,
y_pred
):
# For each class
precision
=
dict
()
recall
=
dict
()
average_precision
=
dict
()
for
i
in
range
(
num_classes
):
precision
[
i
],
recall
[
i
],
_
=
precision_recall_curve
(
y_test_one_hot
[:,
i
],
y_pred
[:,
i
])
average_precision
[
i
]
=
average_precision_score
(
y_test
[:,
i
],
y_pred
[:,
i
])
# A "micro-average": quantifying score on all classes jointly
precision
[
"micro"
],
recall
[
"micro"
],
_
=
precision_recall_curve
(
y_test
.
ravel
(),
y_pred
.
ravel
())
average_precision
[
"micro"
]
=
average_precision_score
(
y_test
,
y_pred
,
average
=
"micro"
)
print
(
'Average precision score, micro-averaged over all classes: {0:0.2f}'
.
format
(
average_precision
[
"micro"
]))
return
recall
,
precision
,
avg_precision
def
plot_pr
(
recall
,
precision
,
average_precision
):
#plotting
plt
.
figure
()
plt
.
step
(
recall
[
'micro'
],
precision
[
'micro'
],
color
=
'b'
,
alpha
=
0.2
,
where
=
'post'
)
plt
.
fill_between
(
recall
[
"micro"
],
precision
[
"micro"
],
alpha
=
0.2
,
color
=
'b'
)
plt
.
xlabel
(
'Recall'
)
plt
.
ylabel
(
'Precision'
)
plt
.
ylim
([
0.0
,
1.05
])
plt
.
xlim
([
0.0
,
1.0
])
plt
.
title
(
'Average precision score, micro-averaged over all classes: AP={0:0.2f}'
.
format
(
average_precision
[
"micro"
]))
plt
.
savefig
(
"precision_recall_curve"
)
#plt.show()
plt
.
close
()
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment