Commit ed4a4a69 by Pamela Osuna

pr curve

parent 474d9b4f
########### PRECISION - RECALL CURVE ##########
from sklearn.metrics import average_precision_score
from sklearn.metrics import precision_recall_curve
def pr(num_classes, y_test, y_pred):
# For each class
precision = dict()
recall = dict()
average_precision = dict()
for i in range(num_classes):
precision[i], recall[i], _ = precision_recall_curve(y_test_one_hot[:, i], y_pred[:, i])
average_precision[i] = average_precision_score(y_test[:, i], y_pred[:, i])
# A "micro-average": quantifying score on all classes jointly
precision["micro"], recall["micro"], _ = precision_recall_curve(y_test.ravel(), y_pred.ravel())
average_precision["micro"] = average_precision_score(y_test, y_pred, average="micro")
print('Average precision score, micro-averaged over all classes: {0:0.2f}'.format(average_precision["micro"]))
return recall, precision, avg_precision
def plot_pr(recall, precision, average_precision):
#plotting
plt.figure()
plt.step(recall['micro'], precision['micro'], color='b', alpha=0.2, where='post')
plt.fill_between(recall["micro"], precision["micro"], alpha=0.2, color='b')
plt.xlabel('Recall')
plt.ylabel('Precision')
plt.ylim([0.0, 1.05])
plt.xlim([0.0, 1.0])
plt.title('Average precision score, micro-averaged over all classes: AP={0:0.2f}'.format(average_precision["micro"]))
plt.savefig("precision_recall_curve")
#plt.show()
plt.close()
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment