Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
A
antifragility
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Ana Pamela Osuna Vargas
antifragility
Commits
bbce07cf
Commit
bbce07cf
authored
Jan 08, 2020
by
Pamela Osuna
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
one line per epoch + independent models
parent
628238b0
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
17 additions
and
20 deletions
+17
-20
cnn.py
+17
-20
No files found.
cnn.py
View file @
bbce07cf
...
@@ -7,7 +7,7 @@ from sklearn.metrics import confusion_matrix
...
@@ -7,7 +7,7 @@ from sklearn.metrics import confusion_matrix
import
numpy
as
np
import
numpy
as
np
from
sklearn.model_selection
import
train_test_split
from
sklearn.model_selection
import
train_test_split
from
imblearn.over_sampling
import
SMOTE
from
imblearn.over_sampling
import
SMOTE
from
sklearn.model_selection
import
KFold
from
sklearn.model_selection
import
Stratified
KFold
from
tensorflow.keras.utils
import
to_categorical
from
tensorflow.keras.utils
import
to_categorical
...
@@ -21,12 +21,13 @@ def run_nn(input_, output_, n_experiences, params):
...
@@ -21,12 +21,13 @@ def run_nn(input_, output_, n_experiences, params):
c
,
b
,
e
=
params
c
,
b
,
e
=
params
#
kfold validation
#
kfold validation
"
"""
"""
X for the input and y for the output
X for the input and y for the output
"""
"""
kfold
=
KFold
(
N_SPLITS
,
True
,
1
)
#on definit la methode a utiliser en choisisant n_splits, shuffle on/off, random_state
skf
=
StratifiedKFold
(
N_SPLITS
)
#kfold = KFold(N_SPLITS, True, 1) #on definit la methode a utiliser en choisisant n_splits, shuffle on/off, random_state
X_train_kfold
=
[]
X_train_kfold
=
[]
X_test_kfold
=
[]
X_test_kfold
=
[]
...
@@ -35,7 +36,8 @@ def run_nn(input_, output_, n_experiences, params):
...
@@ -35,7 +36,8 @@ def run_nn(input_, output_, n_experiences, params):
#split the input data into k sets
#split the input data into k sets
for
train_index
,
test_index
in
kfold
.
split
(
input_
):
#for train_index, test_index in kfold.split(input_):
for
train_index
,
test_index
in
skf
.
split
(
input_
,
output_
):
X_train_kfold
.
append
(
input_
[
train_index
])
X_train_kfold
.
append
(
input_
[
train_index
])
X_test_kfold
.
append
(
input_
[
test_index
])
X_test_kfold
.
append
(
input_
[
test_index
])
y_train_kfold
.
append
(
output_
[
train_index
])
y_train_kfold
.
append
(
output_
[
train_index
])
...
@@ -53,7 +55,7 @@ def run_nn(input_, output_, n_experiences, params):
...
@@ -53,7 +55,7 @@ def run_nn(input_, output_, n_experiences, params):
y_validation
=
[[
0
]
*
(
N_SPLITS
-
1
)
for
i
in
range
(
N_SPLITS
)]
y_validation
=
[[
0
]
*
(
N_SPLITS
-
1
)
for
i
in
range
(
N_SPLITS
)]
y_train
=
[[
0
]
*
(
N_SPLITS
-
1
)
for
i
in
range
(
N_SPLITS
)]
y_train
=
[[
0
]
*
(
N_SPLITS
-
1
)
for
i
in
range
(
N_SPLITS
)]
len_validation
=
int
(
len
(
X_train_kfold
[
0
])
/
4
)
len_validation
=
int
(
len
(
X_train_kfold
[
0
])
/
(
N_SPLITS
)
)
for
i
in
range
(
N_SPLITS
):
for
i
in
range
(
N_SPLITS
):
idx
=
0
idx
=
0
...
@@ -88,10 +90,6 @@ def run_nn(input_, output_, n_experiences, params):
...
@@ -88,10 +90,6 @@ def run_nn(input_, output_, n_experiences, params):
X_train
[
i
][
j
]
=
X_train
[
i
][
j
]
.
astype
(
'float32'
)
X_train
[
i
][
j
]
=
X_train
[
i
][
j
]
.
astype
(
'float32'
)
X_validation
[
i
][
j
]
=
X_validation
[
i
][
j
]
.
astype
(
'float32'
)
X_validation
[
i
][
j
]
=
X_validation
[
i
][
j
]
.
astype
(
'float32'
)
# defining keras model
model
=
m
.
model_architecture
(
c
)
#compile the keras model
model
.
compile
(
loss
=
'categorical_crossentropy'
,
optimizer
=
'adam'
,
metrics
=
[
'accuracy'
])
#self reminder : warning! be careful not to use i and j as indexes later in here for something else
#self reminder : warning! be careful not to use i and j as indexes later in here for something else
...
@@ -104,9 +102,11 @@ def run_nn(input_, output_, n_experiences, params):
...
@@ -104,9 +102,11 @@ def run_nn(input_, output_, n_experiences, params):
for
i
in
range
(
N_SPLITS
):
for
i
in
range
(
N_SPLITS
):
for
j
in
range
(
N_SPLITS
-
1
):
for
j
in
range
(
N_SPLITS
-
1
):
#train the model
#defining keras model
model
.
fit
(
X_train
[
i
][
j
],
train_Y_one_hot
[
i
][
j
],
batch_size
=
bs
,
epochs
=
ep
,
verbose
=
1
,
validation_data
=
(
X_validation
[
i
][
j
],
validation_Y_one_hot
[
i
][
j
]))
model
=
m
.
model_architecture
(
c
)
#compile the keras model
model
.
compile
(
loss
=
'categorical_crossentropy'
,
optimizer
=
'adam'
,
metrics
=
[
'accuracy'
])
model
.
fit
(
X_train
[
i
][
j
],
train_Y_one_hot
[
i
][
j
],
batch_size
=
bs
,
epochs
=
ep
,
verbose
=
2
,
validation_data
=
(
X_validation
[
i
][
j
],
validation_Y_one_hot
[
i
][
j
]))
#calculate accuracy
#calculate accuracy
_
,
accuracy
=
model
.
evaluate
(
X_validation
[
i
][
j
],
validation_Y_one_hot
[
i
][
j
],
verbose
=
0
)
_
,
accuracy
=
model
.
evaluate
(
X_validation
[
i
][
j
],
validation_Y_one_hot
[
i
][
j
],
verbose
=
0
)
total_acc
+=
accuracy
total_acc
+=
accuracy
...
@@ -122,7 +122,7 @@ def run_nn(input_, output_, n_experiences, params):
...
@@ -122,7 +122,7 @@ def run_nn(input_, output_, n_experiences, params):
total_acc
=
total_acc
/
(
N_SPLITS
*
(
N_SPLITS
-
1
))
total_acc
=
total_acc
/
(
N_SPLITS
*
(
N_SPLITS
-
1
))
total_auc
=
total_ac
c
/
(
N_SPLITS
*
(
N_SPLITS
-
1
))
total_auc
=
total_au
c
/
(
N_SPLITS
*
(
N_SPLITS
-
1
))
print
(
"Average accuracy: "
,
total_acc
)
print
(
"Average accuracy: "
,
total_acc
)
print
(
"Average area under the curve: "
,
total_auc
)
print
(
"Average area under the curve: "
,
total_auc
)
...
@@ -149,12 +149,6 @@ def run_kfold(X_train, X_test, y_train, y_test, params):
...
@@ -149,12 +149,6 @@ def run_kfold(X_train, X_test, y_train, y_test, params):
X_train
[
i
]
=
X_train
[
i
]
.
astype
(
'float32'
)
X_train
[
i
]
=
X_train
[
i
]
.
astype
(
'float32'
)
X_test
[
i
]
=
X_test
[
i
]
.
astype
(
'float32'
)
X_test
[
i
]
=
X_test
[
i
]
.
astype
(
'float32'
)
# defining keras model
model
=
m
.
model_architecture
(
c
)
#compile the keras model
model
.
compile
(
loss
=
'categorical_crossentropy'
,
optimizer
=
'adam'
,
metrics
=
[
'accuracy'
])
total_acc
=
0
total_acc
=
0
total_auc
=
0
total_auc
=
0
precs_k
=
[]
#it will contain the average pr curve for each class
precs_k
=
[]
#it will contain the average pr curve for each class
...
@@ -164,6 +158,9 @@ def run_kfold(X_train, X_test, y_train, y_test, params):
...
@@ -164,6 +158,9 @@ def run_kfold(X_train, X_test, y_train, y_test, params):
for
i
in
range
(
N_SPLITS
):
for
i
in
range
(
N_SPLITS
):
model
=
m
.
model_architecture
(
c
)
#compile the keras model
model
.
compile
(
loss
=
'categorical_crossentropy'
,
optimizer
=
'adam'
,
metrics
=
[
'accuracy'
])
#train the model
#train the model
model
.
fit
(
X_train
[
i
],
y_train
[
i
],
batch_size
=
bs
,
epochs
=
ep
,
verbose
=
1
,
validation_data
=
(
X_test
[
i
],
y_test
[
i
]))
model
.
fit
(
X_train
[
i
],
y_train
[
i
],
batch_size
=
bs
,
epochs
=
ep
,
verbose
=
1
,
validation_data
=
(
X_test
[
i
],
y_test
[
i
]))
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment