Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
A
antifragility
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Ana Pamela Osuna Vargas
antifragility
Commits
57c0fc14
Commit
57c0fc14
authored
Dec 11, 2019
by
Pamela Osuna
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
added function thatcalculates average of pr curve for each class
parent
5b2de05d
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
35 additions
and
1 deletions
+35
-1
prec_recall.py
+35
-1
No files found.
prec_recall.py
View file @
57c0fc14
...
...
@@ -8,7 +8,7 @@ def pr(num_classes, y_test, y_pred):
recall
=
dict
()
average_precision
=
dict
()
for
i
in
range
(
num_classes
):
precision
[
i
],
recall
[
i
],
_
=
precision_recall_curve
(
y_test
_one_hot
[:,
i
],
y_pred
[:,
i
])
precision
[
i
],
recall
[
i
],
_
=
precision_recall_curve
(
y_test
[:,
i
],
y_pred
[:,
i
])
average_precision
[
i
]
=
average_precision_score
(
y_test
[:,
i
],
y_pred
[:,
i
])
# A "micro-average": quantifying score on all classes jointly
...
...
@@ -32,3 +32,37 @@ def plot_pr(recall, precision, average_precision):
plt
.
savefig
(
"precision_recall_curve"
)
#plt.show()
plt
.
close
()
def
avg_pr
(
n_splits
,
num_classes
,
recs_k
,
precs_k
,
avgs_k
):
prec_per_class
=
[[
precs_k
[
k
][
i
]
for
k
in
range
(
n_splits
)]
for
i
in
range
(
num_classes
)]
rec_per_class
=
[[
recs_k
[
k
][
i
]
for
k
in
range
(
n_splits
)]
for
i
in
range
(
num_classes
)]
avg_prec_per_class
=
[[
avgs_k
[
k
][
i
]
for
k
in
range
(
n_splits
)]
for
i
in
range
(
num_classes
)]
# First aggregate all points for every recall curve of one class
all_recall_per_class
=
[]
for
i
in
range
(
num_classes
):
all_recall_per_class
.
append
(
np
.
unique
(
np
.
concatenate
([
recs_k
[
k
][
i
]
for
k
in
range
(
n_splits
)])))
mean_prec_per_class
=
[]
for
i
in
range
(
num_classes
):
mean_prec_per_class
.
append
(
np
.
zeros_like
(
all_recall_per_class
[
i
]))
avg_prec
=
np
.
zeros
(
num_classes
)
for
i
in
range
(
num_classes
):
# for a determinated class
for
k
in
range
(
n_splits
):
mean_prec_per_class
[
i
]
+=
np
.
interp
(
all_recall_per_class
[
i
],
rec_per_class
[
i
][
k
][::
-
1
],
prec_per_class
[
i
][
k
][::
-
1
])
avg_prec
[
i
]
+=
avg_prec_per_class
[
i
][
k
]
print
(
avg_prec
[
i
])
mean_prec_per_class
[
i
]
/=
n_splits
avg_prec
[
i
]
/=
n_splits
plt
.
figure
()
plt
.
step
(
all_recall_per_class
[
i
],
mean_prec_per_class
[
i
],
color
=
'b'
,
alpha
=
0.2
,
where
=
'post'
)
plt
.
fill_between
(
all_recall_per_class
[
i
],
mean_prec_per_class
[
i
],
alpha
=
0.2
,
color
=
'b'
)
plt
.
xlabel
(
'Recall'
)
plt
.
ylabel
(
'Precision'
)
plt
.
ylim
([
0.0
,
1.05
])
plt
.
xlim
([
0.0
,
1.0
])
plt
.
title
(
'Average precision score, over class {0}: AP={1:0.2f}'
.
format
(
i
,
avg_prec
[
i
]))
plt
.
savefig
(
"pr_curve_class_"
+
str
(
i
))
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment