filtrado de outliers para relacion de ppgr/mediciones

parent c075bb23
......@@ -59,21 +59,20 @@ def correlaciones(datos, controlado):
lrow = 1
lcol = 1
for metrica in metricas:
datosfil = datos_sorted[np.abs(stats.zscore(datos_sorted[metrica], nan_policy='omit')) < 3]
figura.add_trace(
go.Scatter(x=datos_sorted.index, y=datos_sorted[metrica], name=metrica, mode='markers'),
go.Scatter(x=datosfil.index, y=datosfil[metrica], name=metrica, mode='markers'),
row=lrow, col=lcol
)
figura.add_trace(
go.Scatter(x=datos_sorted.index, y=datos_sorted[metrica].rolling(5).mean(), name="PM(5)"),
go.Scatter(x=datosfil.index, y=datosfil[metrica].rolling(5).mean(), name="PM(5)"),
row=lrow, col=lcol
)
corr = datos_sorted[[metrica]].corrwith(datos_sorted[controlado]).values[0]
figura.add_annotation(row=lrow, col=lcol, text="R = " + "{:.2f}".format(corr))
lcol = lcol + 1 if lcol < 2 else 1
lrow = lrow + (lcol % 2)
figura.update_layout(yaxis1= dict(range=[15,45]))
figura.update_layout(yaxis3= dict(range=[80,120]))
figura.update_layout(yaxis4= dict(range=[4,7]))
figura.update_layout(showlegend=False)
return figura
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment